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Abstract

A global Fourier pseudospectral method is presented and used to solve a
dispersive model of shallow water wave motions. The model equations un-
der consideration are from the Boussinesq hierarchy of equations, and allow
for appropriate modelling of dispersive short-wave phenomena by including
weakly non-hydrostatic corrections to the hydrostatic pressure in the shal-
low water model. A numerical solution procedure for the Fourier method
is discussed and analyzed in some detail, including details on how to effi-
ciently solve the required linear systems. Two time-stepping approaches are
discussed. Sample model results are presented, and the Fourier method is
compared to the discontinuous Galerkin finite element method (DG-FEM)
at various orders of accuracy. The present work suggests that scalable
Fourier transform methods can be employed in water-wave problems in-
volving variable bathymetry and can also be an effective tool at solving
elliptic problems with variable coefficients if combined properly with itera-
tive linear solvers and pre-conditioning. Additionally, we demonstrate: 1)
that the small amounts of artificial dissipation (from filtering) inherent to
the Fourier method make it a prime candidate for hypothesis-testing against
water wave field data, and 2) the method may also serve as a benchmark
for lower order numerical methods (e.g., Finite Volume Method, DG-FEM)
that can be employed in more general geometries.
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1. Introduction1

Many of the recent advances in the study of dispersive water waves2

in geophysical fluid dynamics (GFD) and coastal engineering applications3

have come from numerical solutions to dispersive shallow water systems of4

equations. These dispersive shallow water models (SWM) all arise from the5

approach, often referred to as the method of Boussinesq (1872), of seeking6

an approximate analytical solution to the irrotational flow interior that7

underlies the wave-dominated free surface, followed by retaining weakly8

non-hydrostatic pressure corrections in the kinematic and dynamic surface9

conditions.10

In the literature there is an overwhelming number of partial differential11

equation (PDE) systems referred to as “Boussinesq equations”, e.g., Brandt12

et al. (1997); Lynett and Liu (2004); Madsen et al. (1991); Nwogu (1993);13

Peregrine (1967); Madsen et al. (2002), and choosing an appropriate system14

for a given problem is a difficult task in and of itself since each model offers a15

different level of applicability and complexity. Past work includes solutions16

to the “extended Boussinesq equations” of Nwogu (1993) using low-order17

finite difference methods by Wei and Kirby (1995) and low-order finite el-18

ement methods by Walkley (1999). Lynett and Liu (2004) derived a dis-19

persive shallow water system using a two-layer depth-integration approach20

and solved the equations numerically using fourth-order finite differences.21

More recently, high-order numerical solutions to the equations of Pere-22

grine (1967) in arbitrary geometries were obtained by Eskilsson and Sher-23

win (2005) and Karniadakis and Sherwin (2005) using the discontinuous24

Galerkin finite element method (DG-FEM). Engsig-Karup et al. (2006) also25

used the high-order DG-FEM method to obtain solutions to the recent26

“high-order Boussinesq” formulation by Madsen et al. (2002) that repre-27

sented a vast improvement over existing Boussinesq-type models in terms28

of more accurate dispersive, shoaling, and nonlinear characteristics.29

Recent applications of Boussinesq-type systems in GFD include the stud-30

ies of Brandt et al. (1997) on internal waves in the Strait of Messina and31

of de la Fuente et al. (2008) on the effects of dispersion on Kelvin and32

Poincaré waves in a stratified rotating circular basin. Although these two33

studies focused on low-order numerical solutions to Boussinesq-type sys-34

tems, the increasing demand in the GFD community for more accurate35

solution techniques for these dispersive SWMs is clear.36

In this work, we mainly consider high-order solution methods for a sim-37

ple dispersive shallow water system in the Boussinesq family in two spatial38
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dimensions as stated by de la Fuente et al. (2008). We motivate our choice39

of numerical method by considering particular GFD applications where it40

is assumed that wave interactions with solid boundaries are not of interest41

and that periodic domains are suitable for capturing the desired dynam-42

ics. Under these assumptions, the Fourier pseudospectral method is a clear43

choice due to the fact that it gives the highest order of accuracy possi-44

ble on periodic domains, has excellent resolution characteristics, and has45

small amounts of inherent dissipation (see, for example, Boyd (2001)). We46

have opted to consider one of the more simple Boussinesq-type systems47

with the idea in mind that the methods presented here can be extended to48

more complicated sets of equations at the price of further computational49

expenses. We have adopted the second-order accurate Leapfrog scheme for50

the temporal discretization of the model equations that is commonly used in51

atmospheric/oceanic general circulation models (Williams, 2011; Amezcua52

et al., 2011). Although it is only second-order accurate, Leapfrog offers53

benefits in the form of requiring less memory than the corresponding linear54

multi-step methods (i.e., Adams–Bashforth) and fewer computations than55

a multi-stage Runge-Kutta method.56

In the following section, we introduce the choice of governing equations57

and discuss their properties. We then introduce a simple time-stepping pro-58

cedure followed by a more efficient technique inspired by the approach of59

Eskilsson and Sherwin (2005) that reduces the size of the resulting linear60

system by a factor of 2 by transforming the dispersive terms to a standard61

pressure-type elliptic problem. A Fourier pseudospectral spatial discretiza-62

tion method is introduced for numerical solutions in two spatial dimensions63

along with strategies for solving the required linear systems. A nodal DG-64

FEM spatial discretization method in one dimension is also introduced. The65

paper concludes with validation of numerical solutions and a comparison66

between Fourier and DG-FEM solutions to the Boussinesq-type system in67

one dimension, followed by sample results obtained in two dimensions with68

the Fourier method. The present work suggests that scalable Fast Fourier69

Transform (FFT) based methods for water wave equations can be extended70

to physical cases involving non-constant bathymetry and can also be an ef-71

fective tool for solving elliptic problems with non-constant coefficients pro-72

vided they are used alongside an appropriate iterative linear solver with73

pre-conditioning. Given the highly accurate nature of the Fourier method,74

the results presented here may be seen as a benchmark for lower-order spa-75

tial discretization techniques such as DG-FEM and FVM, and allow for76
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rational hypotheses to be formulated for subsequent testing against field77

data of water waves.78

2. Methods79

2.1. Governing Equations80

The governing equations used by de la Fuente et al. (2008) in their study
of internal waves in a circular basin for a single fluid layer are

∂h

∂t
+∇ · (hu) = 0 , (1)

∂(uh)

∂t
+∇ · ((uh)u) = −gh∂η

∂x
+ fvh+

H2

6

∂

∂x

(
∇ · ∂(uh)

∂t

)
, (2)

∂(vh)

∂t
+∇ · ((vh)u) = −gh∂η

∂y
− fuh+

H2

6

∂

∂y

(
∇ · ∂(uh)

∂t

)
, (3)

where u(x, y, t) = (u(x, y, t), v(x, y, t)) is the velocity field, h(x, y, t) =81

H(x, y) + η(x, y, t) is the total depth with H representing the undisturbed82

depth, and η is the free surface displacement. The constants g and f are83

the acceleration due to gravity and the Coriolis frequency, respectively. In84

the test cases considered in this work, we focus on the case where f = 085

(no rotation) but have included the Coriolis terms in the equations above86

since it will allow for interesting applications in geophysical fluid dynamics87

to be studied in future work, e.g., instabilities in geostrophic jets and the88

evolution of rotating gravity waves. The main difference between the set of89

equations (1)–(3) and the traditional shallow water model are the dispersive90

terms H2

6
∇(∇ · (uh)t) found in the momentum equations (2) & (3). The91

above system was first proposed by Brandt et al. (1997) in their study of92

internal waves in the Strait of Messina.93

We have neglected bottom and surface stresses in equations (1)–(3)94

since their inclusion into the numerical scheme is conceptually easy and95

contributes little to the discussion. We have also chosen to focus on the96

case of a single fluid layer of constant density. We have made this choice97

since multiple-layer extensions are numerically straightforward (at least for98

Fourier methods), aside from the expected increases in computational cost.99

2.2. Time-Stepping Techniques100

For the moment, we will assume that we have spatially discretized101

the system (1)–(3) using a method of lines approach as discussed by Tre-102

fethen (2000). That is, the flow variables of interest (h, u, v) have been103
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discretized on N grid-points and are now represented by the N × 1 vectors104

(h,u,v) = ([h1, · · · , hN ]T , [u1, · · · , uN ]T , [v1, · · · , vN ]T), where we adopt105

the notation that bold-faced variables refer to the discretized approximate106

solution fields of the system (1)-(3). We further assume that the continu-107

ous spatial derivative operators ∂
∂x
, ∂

∂y
, ∂2

∂x2 ,
∂2

∂y2
, ∂2

∂xy
have been replaced by108

the N × N matrices Dx, Dy, Dxx, Dyy, Dxy or that the required matrix-109

vector products are attainable by other means, such as the pseudospectral110

technique Peyret (2002).111

To keep the discussion as general as possible, we do not specify which112

spatial discretization scheme we are using since the following time-stepping113

schemes may be applied to a number of spatial discretization methods in-114

cluding Finite Difference methods, the Fourier pseudospectral method, the115

Chebyshev spectral collocation method, and DG-FEM Trefethen (2000).116

Upon applying the method of lines to the Boussinesq system (1)-(3), we
recover the semi-discrete system of equations

dh

dt
= −Dx(uh)−Dy(vh) , (4)

d(uh)

dt
− H2

6

d

dt
(Dxx(uh) +Dxy(vh)) = −Dx(uuh)−Dy(uvh)

− ghDxη + fvh , (5)

d(vh)

dt
− H2

6

d

dt
(Dxy(uh) +Dyy(vh)) = −Dx(vuh)−Dy(vvh)

− ghDyη − fuh , (6)

where we have regrouped terms for later convenience. For notational brevity,
we adopt the convention that vector products of the form ab refer to the
Schur product, i.e.,

ab = [a1b1, · · · , aNbN ]T .
The question that remains is how to choose the time-discretization to

allow for a stable and efficient scheme. The most obvious choice is to apply
the same numerical ODE integrator to all instances of d

dt
in equations (4)-

(5). We discretize the flow variables (h,uh,vh) at the time levels

tn = n∆t, n = 0, 1, · · · , (7)

where ∆t represents the time-step and adopt the notation that superscript
n denotes the nth time-step. Applying the Leapfrog formula to equations
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(4)-(6) results in the scheme

hn+1 = hn−1 + 2∆t(−Dx(uh)
n − Dy(vh)

n) , (8)
(
I − H2

6
Dxx −H2

6
Dxy

−H2

6
Dxy I − H2

6
Dyy

)(
(uh)n+1

(vh)n+1

)
=

(
RHSn,n−1

1

RHSn,n−1
2

)
, (9)

where117

RHSn,n−1
1 = (uh)n−1 − H2

6
Dxx(uh)

n−1 − H2

6
Dxy(vh)

n−1 (10)

+ 2∆t(−Dx(uuh)
n −Dy(uvh)

n − ghnDxη
n + f(vh)n) ,

RHSn,n−1
2 = (vh)n−1 − H2

6
Dxy(uh)

n−1 − H2

6
Dyy(vh)

n−1 (11)

+ 2∆t(−Dx(vuh)
n −Dy(vvh)

n − ghnDyη
n − f(uh)n) ,

Hii = Hi is the N ×N matrix with the entries of H = [H1, · · · , HN ]
T along118

its diagonal, and I is the N×N identity matrix. Due to the coupled nature119

of the semi-discrete momentum equations (5)-(6), a block matrix of size120

2N × 2N appears in the scheme despite our choice of an explicit numerical121

ODE integrator. An approach for reducing the dimension of the required122

linear system by a factor of 2 is discussed below.123

2.2.1. The Scalar Approach124

Although there is nothing wrong with the scheme represented by (8)-(9),125

it is desirable to find an alternative scheme that involves solving a smaller126

linear system of equations, if possible. Such a scheme can be obtained127

by adding an auxiliary elliptic equation to the Boussinesq system. The128

resulting linear system is N ×N . This was demonstrated by Eskilsson and129

Sherwin (2005) where the DG-FEM method was used to solve the equations130

of Peregrine (1967) that are similar to the system (1)-(3).131

The approach begins by introducing the scalar variable

z = ∇ · (uh)t , (12)

which represents the time rate of change of momentum divergence. If we
then take the divergence of the vector form of the momentum equations
(2)-(3), we arrive at the elliptic equation

∇ ·
(
H2

6
∇z

)
− z = −∇ · a , (13)
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that is referred to as a wave continuity equation by Eskilsson and Sherwin
(2005). The vector a = (a1, a2)

T is given by the flux terms in equation
(2)-(3), i.e.,

a =

(
−∇ · ((uh)u)− ghηx + fvh
−∇ · ((vh)u)− ghηy − fuh

)
. (14)

Applying the method of lines to the augmented system represented by equa-
tions (1)-(3) and (13) gives the semi-discrete equations

dh

dt
= −Dx(uh)−Dy(vh) , (15)

d(uh)

dt
= −Dx(uuh)−Dy(uvh)− ghDxη + fvh+

H2

6
Dxz , (16)

d(vh)

dt
= −Dy(vuh)−Dy(vvh)− ghDyη − fuh+

H2

6
Dyz , (17)

H2

6
(Dxxz + Dyyz)− z

+
1

6

(
Dx(H

2)Dxz+Dy(H
2)Dyz

)
= −(Dxa1 +Dya2), (18)

where we have first applied the product rule to equation (13) in arriving
at (18). The left-hand side of equation (18) may be factored to resemble a
linear system of equations of the form

Az = b , (19)

with

A =
H2

6
(Dxx +Dyy)− I +

1

6

(
Dx(H2)Dx +Dy(H2)Dy

)
, (20)

b = −(Dxa1 +Dya2) . (21)

We can then obtain an appropriate numerical scheme by applying the
Leapfrog formula to equations (15)-(17) and using time-splitting so that
the equation for z may be inverted using the most recent information avail-
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able. The resulting scheme at each time-step is

hn+1 = hn−1 + 2∆t(−Dx(uh)
n −Dy(vh)

n) , (22)

(uh)† = (uh)n−1 + 2∆ta1
n , (23)

(vh)† = (vh)n−1 + 2∆ta2
n , (24)

z† = A−1b† , (25)

(uh)n+1 = (uh)† + 2∆t
H2

6
Dxz

† , (26)

(vh)n+1 = (vh)† + 2∆t
H2

6
Dyz

† , (27)

where b† is the vector b evaluated using (uh)†, (vh)†, and hn+1. An alter-132

native method that requires fewer computations at the cost of slightly worse133

accuracy is to compute z† first using only information from the nth time-134

step, and then to compute (hn+1, (uh)n+1, (vh)n+1) without time-splitting.135

Our numerical experiments revealed negligible differences in accuracy be-136

tween the two methods.137

The most expensive part of the algorithm is in step (25), solving the138

linear system Az = b. For pseudospectral methods, the matrix A is dense,139

and due to memory restrictions, direct methods such as LU-factorizations140

become impractical at high resolutions (Boyd, 2001). To overcome this141

issue, it is necessary to consider iterative methods such as the generalized142

minimum residual method (GMRES) and pre-conditioning to reduce the re-143

quired number of iterations. In Section 2.3.2, we illustrate how to construct144

a suitable pre-conditioner using a finite differences approximation.145

The schemes presented above are not self-starting. Therefore, they must146

be started by taking either a single time-step with the first-order accurate147

Forward Euler method or a higher-order Runge-Kutta method.148

2.3. Fourier Spatial Discretization Method149

We now present the Fourier spatial discretization method applied to the
scheme represented by equations (22)-(27). We begin by discretizing the
periodic rectangular domain Ω = [0, Lx] × [0, Ly] by constructing a tensor-
product grid from the one-dimensional equidistant grids

xi = i∆x, i = 0, · · · , Nx − 1 , (28)

yj = j∆y, j = 0, · · · , Ny − 1 , (29)

where ∆x = Lx/Nx and ∆y = Ly/Ny represent the grid spacing in the
x and y directions, respectively. The resulting two-dimensional grid then
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has N = NxNy total grid points. It is also useful to define the discrete
wavenumber vectors k and l defined as

ki =
2π

Lx

i, i = 0, · · · , Nx − 1 , (30)

lj =
2π

Ly

j, j = 0, · · · , Ny − 1 . (31)

Rather than using differentiation matrices to compute the approximate150

derivatives in the schemes presented above, we employ the “pseudospectral151

technique” as described by Peyret (2002). That is, differentiation is per-152

formed in spectral space (the space of the Fourier coefficients) with the fast153

discrete Fourier transform (FFT) while products are performed in physical154

space. Doing so allows one to avoid the expense of directly computing con-155

volution sums in the space of the Fourier coefficients, as the nonlinear terms156

would require. Pseudospectral differentiation is also faster than explicitly157

calculating matrix-vector products that require O(N2) floating-point op-158

erations (FLOPS) since the FFT requires O(N logN) FLOPS, and Schur159

products requires O(N) FLOPS.160

For the purposes of pseudospectral differentiation, it is useful to consider
the flow fields as Ny×Nx matrices instead of NxNy ×1 vectors. For a given
discretized field φ which may represent a flow variable or a product of flow
variables, we approximate its discrete derivatives as

φx = F−1
x (iKFx(φ)) , (32)

φy = F−1
y (iLFy(φ)) , (33)

φxx = F−1
x

(
−K2Fx(φ)

)
, (34)

φyy = F−1
y

(
−L2Fy(φ)

)
, (35)

φxy = F−1
y (iLFy(φx))) , (36)

where Fx and Fy represent the discrete Fourier transforms with respect to161

x and y, respectively, i =
√
−1, and superscript −1 refers to the inverse162

transform. The wavenumber matrices K and L are of size Ny × Nx with163

entries Kij = kj, Lij = li. All of the products in (32)-(36) are Schur164

products.165

The underlying assumptions used in this spatial discretization are that166

the solution fields are smooth and periodic in space in both directions, and167

they are hence well represented by a sinusoidal basis. Given these assump-168

tions, the Fourier pseudospectral spatial discretization method guarantees169
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an exponential convergence rate (Boyd, 2001). If one or both of these as-170

sumptions are broken, Gibbs oscillations are introduced into the solution171

and the convergence rate is reduced to polynomial order.172

2.3.1. Solving the Linear System173

In order to solve the linear system (19), one may be tempted to explic-174

itly build the large matrix A using two-dimensional spectral differentiation175

matrices. However, this is typically not a good idea due to memory restric-176

tions. Two-dimensional spectral differentiation matrices can be built from177

kronecker products between the 1D differentiation matrix and the appropri-178

ate identity matrix, and require O(NxNy(Nx +Ny)) memory. If mixed spa-179

tial derivatives are required, the situation can be the worst case, O(N2
xN

2
y )180

memory, which is certainly not reasonable. It is clear that indirect meth-181

ods for solving the system (19) are required in the case of a pseudospectral182

spatial discretization.183

In doubly-periodic cases with a flat bottom, the mean depth H is a
constant and the linear system (19) may be solved efficiently using the
pseudospectral technique by first taking its Fourier transform, yielding

ÂFxy(z) = Fxy(b) , (37)

where

Â =

(
−H

2

6

(
K2 + L2

)
− 1

)
, (38)

1 is the Ny ×Nx matrix of all ones, and Fxy is the double discrete Fourier
transform. To solve the system, we take the Schur product of both sides
with Â−1, defined as

Â−1
ij =

1

Âij

, (39)

the multiplicative inverse of Â. Hence,

z = F−1
xy

(
Â−1Fxy(b)

)
. (40)

This situation is ideal, since we are able to effectively solve a large, dense lin-184

ear system with O(NxNy(Nx+Ny)) entries in O(NxNy log(NxNy)) FLOPS.185

In cases where the bottom is not flat, the technique represented by (37)-(38)186

is not available since point-wise products become convolutions in Fourier187

space, so another method must be sought.188
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Iterative linear system solutions appear to be our only course of action189

in the case of variable depth. Since the Krylov subspace methods do not190

explicitly require the entries of the matrix A (Golub and Van Loan, 1996),191

they are a clear choice. Furthermore, given that the matrices being solved192

are not guaranteed to be symmetric nor skew-symmetric (Trefethen, 2000),193

a good choice of iterative linear solver is the generalized minimum residual194

method (GMRES) (Trefethen and Bau, 1997).195

The main difficulty with using such iterative solvers, is that the linear196

systems to be solved can be quite poorly conditioned, driving the number197

of iterations to be on the same order as the problem’s dimension. This issue198

typically gets worse at higher resolutions (Boyd, 2001). To overcome this,199

it is useful to pre-condition the linear system to obtain convergence at a200

relatively small number of iterations as discussed below.201

2.3.2. Finite Differences Pre-Conditioner202

Since the linear system to be solved is the result of a high-order PDE203

spatial discretization, a popular and effective choice of pre-conditioner is a204

low-order spatial discretization of the PDE (Trefethen and Bau, 1997).205

A finite differences discretization is a natural choice since it allows one206

to fix the order of approximation independently of the number of grid207

points and the grid-spacing used (Leveque, 2007). The resulting spatial-208

discretization operators are typically very sparse and banded, and as a re-209

sult can be solved or factored quite easily using sparse matrix manipulation210

software libraries.211

To construct a pre-conditioner for solving the linear system (19), we212

employ the second-order centered differences formulas given by Leveque213

(2007) to construct the N × N differentiation matrices D
(2)
x , D

(2)
y , D

(2)
xx ,214

D
(2)
yy , where superscript “(2)” refers to the order of approximation used. A215

second order approximation to the matrix A, denoted A(2), can then be216

constructed using the formula (20). The resulting matrix is pentidiagonal,217

requiring O(5N) memory since its construction relies on the 5-point finite218

differences stencil for the Laplacian (Iserles, 1996).219

Since A(2) is an approximation of A, we can imagine left-multiplying
(19) by (A(2))−1

(A(2))−1Az = (A(2))−1b , (41)

to obtain a more well-conditioned linear system since (A(2))−1A ≈ I. Of220

course, this is merely illustrative since A is not explicitly built and comput-221

ing the explicit inverse of A(2) is impractical. Instead, the fact that we are222
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using the GMRES method requires that linear systems of the formA(2)z̃ = b̃223

be solved at each iteration. In order to ensure linear systems of this form224

can be solved effectively, it is useful to compute the LU-factorization of A(2)
225

in the pre-processing stage and to simply reuse its factors at each GMRES226

iteration.227

It has been found that using the factors returned by the sparse-LU fac-
torization routine provided in the UMFPACK library yield very fast solu-
tions to A(2)z̃ = b̃. In addition to the lower- L and upper-triangular U
factors, partial pivoting is also performed with a permutation matrix P and
column-reordering matrix Q so that

PA(2)Q = LU . (42)

The main cost of using this technique is in storing the factors L and228

U , which in the worst case, can be the same cost as storing a full N × N229

matrix. At high resolutions, storing the factors may become unfeasible, and230

incomplete LU-factorizations may be used instead with a drop-tolerance231

tuned to give a balance between memory usage and iteration count. At232

even higher resolutions, such a balance may not exist, and more memory233

efficient techniques such as geometric multigrid (Trottenberg et al., 2000)234

or multi-level domain decomposition algorithms (Smith et al., 2004) should235

be considered.236

2.4. Filter Stabilization of Aliasing-driving Instabilities237

The equations do not possess any viscosity terms and thus lack any phys-238

ical energy dissipation mechanism. As a result, the quadratic nonlinearity239

terms can cause energy to accumulate at the small scales in an unphysical240

manner. Additionally, aliasing errors that occur due to the “pointwise prod-241

uct” treatment of the nonlinear terms can drive weak numerical instabilities242

that can destroy the numerical solutions (Hesthaven and Warburton, 2008).243

In light of these issues, filtering is taken as a procedure to dissipate
energy as it accumulates at the small scales and to prevent aliasing errors
from driving weak instabilities. This can be achieved by applying a low-pass
wavenumber filter of the form

σ(k) =

{
1, 0 ≤ k < kcrit

exp
(
−α

(
k−kcrit

kmax−kcrit

)s)
, kcrit ≤ k ≤ kmax

(43)

in each direction in spectral space to the solution fields after each time-step.244

A similar filter is used by Hesthaven and Warburton (2008) in the nodal245
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DG-FEM framework. Typical parameters used in the simulations presented246

in Section 3 are kcrit = 0.65kmax, s = 4, α = 18.4, where kmax is the Nyquist247

wavenumber. The parameters α, s, and kcrit are tunable and, in general,248

their values must be determined through experimentation.249

3. Results and Discussion250

3.1. Pre-conditioner performance test251

To confirm the performance of our pre-conditioned GMRES algorithm252

for solving equation (18), we have compared it to the GMRES method253

without pre-conditioning. The problem we consider for inversion here cor-254

responds to the first time-step of the full simulation presented below in255

Section 3.7. Hence, the variable coefficients on the left-hand side as well256

as the function on the right-hand side of (18) are both non-trivial. The257

convergence criterion was taken to require the magnitude of the relative258

residual to be below 10−9, and this value was also used for all simulations259

with a non-flat bottom, i.e., whenever GMRES was used. The problem was260

solved at a variety of grid resolutions, ranging from 16× 16 to 1024× 1024.261

Iteration counts for both the ‘GMRES with pre-conditioning’ (GM-262

RESP) and ‘GMRES without pre-conditioning’ (GMRESNP) methods along263

with the ratio of their run-times are listed at all resolutions considered in264

Table 1. The corresponding tests were carried out in Matlab, and it was265

found that the values for the run-times fluctuated somewhat due to the per-266

formance of Matlab’s built-in parallelization’s dependendence on processor267

load. Hence, the run-time values used in Table 1 were averaged over ten268

runs to average out these fluctuations.269

Table 1 shows the pre-conditioner’s ability to keep the iteration count270

relatively low in comparison to the case where pre-conditioning is not used.271

At low resolutions (128 × 128 and below), the reduction in iteration count272

does not overcome the computational cost of using a pre-conditioner since273

the run-time ratio is less than one. However, at higher resolutions the274

savings are considerable, and the high iteration count at high resolutions275

makes the ‘GMRESNP’ method unpractical for use in simulations due to276

the unreasonable amount of computational time required. For example, the277

GMRESNP method at 1024×1024 resolution typically took about 280 s to278

converge.279
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GMRESP GMRESNP
Resolution Iteration Count Iteration Count Run-Time Ratio
16× 16 5 5 0.71
32× 32 6 7 0.77
64× 64 9 10 0.78
128× 128 9 15 0.94
256× 256 12 32 1.75
512× 512 16 70 4.27
1024× 1024 19 147 16.2

Table 1: Iteration count vs. grid resolution for the ‘GMRES with pre-conditioning’ (GM-
RESP) and ‘GMRES without pre-conditioning’ (GMRESNP) methods. At each resolu-
tion, the run-time ratio is given by the time taken for the GMRESNP method to converge
divided by time taken for the GMRESP method to converge.

3.2. Convergence test of the Fourier method280

To verify that the Fourier spatial discretization method is giving the de-
sired exponential convergence rate, we have performed a convergence study
for the Helmholtz problem (13) in two dimensions, where we have chosen
the form of the exact solution and variable coefficient a priori, and the right-
hand side function was calculated analytically from the known functions.
The problem we consider here is

∇ · (α∇z)− z = f , (44)

on the periodic square Ω = [0, 2π]× [0, 2π], where

α(x, y) = 2 + sin(x) cos(y) , (45)

f(x, y) = −sech(10(y − π))3[9 cos(y) cos(x) sin(9x) cosh(10(y − π))2

− 10 sin(y) sin(x) cos(9x) sinh(10(y − π)) cosh(10(y − π))

− 19 cos(9x) cos(y) sin(x) cosh(10(y − π))2

− 37 cos(9x) cosh(10(y − π))2

+ 200 cos(9x) cos(y) sin(x) + 400 cos(9x)] , (46)

so that the exact solution is given by

z(x, y) = cos(9x) sech(10(y − π)) . (47)

The problem was first solved on a coarse 16× 16 grid. The resolution was
then doubled in each direction and the problem was solved repeatedly until
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Figure 1: Relative error (Re) between exact and numerical solutions to the 2D Helmholtz
problem (44) vs. N0.5, the square-root of the total number of grid points.

convergence to numerical precision was reached. In each case, the number
of grid points was kept the same in each direction, i.e., Nx = Ny = N0.5,
where N0.5 is the square root of the total number of grid points. In Figure 1,
we plot the relative L2 error, Re, vs. N

0.5, where

Re =

∫∫
Ω

(zNum − z)2 dS

∫∫
Ω

z2dS
, (48)

and zNum is the solution computed numerically via the pre-conditioned GM-281

RES method. The integral in the numerator of equation (48) was computed282

numerically using the Fourier expansion coefficients (obtained with FFT),283

and the integral in the denominator was calculated exactly.284

Figure 1 reveals that the Fourier method converges exponentially fast to285

the exact solution, as expected, and that convergence to within numerical286

precision has been reached at a grid resolution of 512× 512.287

3.3. Fourier method versus DG-FEM in 1D288

In addition to the Fourier method, we have also obtained solutions to289

the one-dimensional form of the system (1)-(3) with a flat bottom using290

the nodal discontinuous Galerkin finite element method (DG-FEM). High291

order nodal and modal DG-FEM solutions to Boussinesq-type systems have292

been previously obtained by Engsig-Karup et al. (2006) and Eskilsson and293
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Sherwin (2005), respectively. The interested reader may find the details294

of the DG-FEM solution procedure to the 1D system in Appendix A.295

The main reason we seek DG-FEM solutions here is to illustrate how a296

global spatial discretization method (Fourier) compares to a local spatial297

discretization method (DG-FEM) at various orders of approximation.298

To perform this comparison, we have decided to run a simulation where
a packet of short waves of two distinct wavelengths is released from rest.
The domain was taken to be periodic and Lx = 4000 m in length, the depth
was fixed at H = 5 m, and the acceleration due to gravity was taken to be
g = 9.81 m s−2. The initial condition is

η(x, 0) = η0 cos(0.15x) cos(0.05x)e
−5( x−0.5Lx

400 )
2

, (49)

u(x, 0) = 0 , (50)

where η0 = 0.1 m. The amplitude of the wave packet was chosen to be299

small enough so that linear wave theory would be a good predictor of the300

group velocities. This was confirmed by solving the linearized equations301

exactly in Fourier space and comparing with the numerical solution (not302

shown). Due to dispersion, we expect the longer waves to overtake and lead303

the shorter waves, after sufficient time has passed, since the linear group304

velocity of the longer waves is cg ≈ 9.31 m s−1 while the group velocity of305

the shorter waves is cg ≈ 6.14 m s−1. This run was also used to validate the306

numerical methods in the regime where nonlinear effects are negligible and307

the bottom is flat.308

In Figure 2, the results of the runs are displayed at various orders of309

accuracy. The values of K (total number of elements) and N (order of the310

basis functions) were chosen such that the total number of points used in311

the DG-FEM method would be fixed at Ndof = K(N + 1) = 2520. Modal312

filtering was not used in any of the runs, since the choices of small-amplitude313

waves and a flat bottom remove most, if not all, of the sources of nonlinearity314

and aliasing errors. A striking observation is that for the low-order runs,315

the shorter waves are dissipated to a very large degree, and in the N = 1316

case, in effect entirely.317

In Figure 3, the time series of the domain-integrated total energy, defined
by

E(t) =

∫ Lx

0

1

2
hu2 +

1

2
gη2 dx , (51)

is plotted for each of the cases shown in Figure 2. It can be shown that318

the Boussinesq system (1)-(3) does not conserve energy (as is true of most319
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Figure 2: Fixed time snapshots of the free surface displacement at various orders of
approximation for the 1D dispersive short-waves run. Panels (b)-(f) are all at time
t = 100s. (a) η at t = 0. (b) DG-FEM N = 1 result. (c) DG-FEM N = 3 result.
(d) DG-FEM N = 20 result. (e) DG-FEM N = 41 result. (f) Fourier Method with
Nx = 2520 grid points result.
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Figure 3: Domain-integrated total energy time series for the 1D dispersive short-waves
run with (a) the DG-FEM method at orders N = 1 (light grey), N = 3 (dark grey), and
N = 20 (black), and (b) the DG-FEM method at order N = 41 (grey) and the Fourier
method with Nx = 2520 points (black). The domain-integrated total energy E has been
scaled by E0, its value at t = 0. The number of grid points (degrees of freedom) is fixed
at Ndof = 2520 in all cases.
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Boussinesq-type systems), and even exact solutions would not satisfy the320

physical property E(t) =constant. Indeed, the plots in Figure 3 reveal that321

in the absence of numerical dissipation, E(t) is oscillatory. Once again,322

this fact has been confirmed by comparing to the exact solution of the323

linearized equations in Fourier space (and invoking Parseval’s theorem).324

This oscillatory behaviour is a well-known consequence of using Boussinesq-325

type systems, and Boussinesq-type systems that conserve energy exactly326

have been proposed (Christov, 2000). However, these energy-conserving327

systems tend to be undesirable for numerical integration due to the presence328

of third-order spatial derivatives.329

The plots reveal the difference in numerical dissipation between the DG-330

FEM method at different orders when compared to the Fourier method.331

Even at a very high order of N = 41, the DG-FEM method cannot match332

the energy-conserving qualities of the Fourier method. This fact is likely333

owed to the numerical dissipation introduced by using the numerical flux334

function (A.8) that is only an approximate Riemann solver, and for stability,335

is chosen to contribute a non-positive value to the global energy balance at336

each time-step (Hesthaven and Warburton, 2008). Regardless of this fact,337

for a fixed number of degrees of freedom (Ndof = 2520), one still expects the338

DG-FEM method’s result to converge to the Fourier method’s result in the339

high-order limit (N,K) = (2519, 1) where the number of interior elemental340

interfaces is zero.341

It was thought that a more accurate choice of approximate Riemann342

solver for the advective (flux gradient) terms, such as the Harten-Lax-Van343

Leer solver modified for contact waves (HLLC) used in Eskilsson and Sher-344

win (2005), would improve the energy-conserving qualities of the DG-FEM345

solutions shown here. Upon implementing the HLLC numerical flux, how-346

ever, significant improvements to the solutions were only found in low-order347

simulations (N = 1) (not shown). This apparent insensitivity to the choice348

of approximate Riemann solver is undoubtedly owed to the dispersive terms349

in our model equations that result in solutions that are more regular than350

those obtained from the traditional (hydrostatic) shallow water model.351

3.4. Comparison of numerical code to approximate analytical solutions352

In the next step towards validating our numerical methodology for the
Fourier spatial discretization method, we compared numerical solutions ob-
tained from our numerical code to approximate analytical solutions obtained
using the WKB (Wentzel-Kramers-Brillouin) approximation for situations
involving variable depth in 1D. The approximation is valid in situations
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where the depth H varies more slowly in space than the free surface η.
Hence, we assume that H depends only on a slow coordinate. Here, we
merely state the WKB solution, and relegate the full details of its deriva-
tion to Appendix B. The WKB solution is given by

η(x, y, t) ∼ A(ǫx)ei(
S0
ǫ
(ǫx)−σt) , as ǫ→ 0 , (52)

u(x, y, t) =

√
g

H
η(x, y, t) . (53)

where A(ǫx) = a0H
− 1

4 , a0 is an arbitrary constant, ǫ is a small parameter,353

and S0(ǫx) is given by equation (B.7).354

To compare our numerical code with the WKB solution (52), we ini-
tialized the numerical solver with the real part of the WKB solution (with
S0 > 0) taken at t = 0, stepped the solution forwards in time for five wave
periods, and compared the numerical solution to the approximate analytical
solution at the final time. We chose the slowly varying depth profile

H(ǫx) = H0 −∆H sin(ǫx) , (54)

where ǫ = 2π/Lx is the wavenumber of the longest sinusoidal wave that fits
in the domain. Here, Lx = 3000 m and H0 = 15 m. We have varied the
parameter ∆H from 0–2.5 m, expecting the two solutions to agree best in
the limit that ∆H → 0 (a flat bottom). We set a0 = 10−4Hmin in all cases
to ensure that nonlinear effects in the numerical solution were negligible.
The numerical grid was taken to have 1024 points (grid halving experiments
suggest that the simulations are numerically converged upon reaching 256
points), and the time-step was taken to be

∆t =
1

20

∆x√
gH0

, (55)

where ∆x is the uniform grid spacing. The time-step was taken to be smaller355

than what is typically required for numerical stability. This was done in356

order to minimize the amount of error introduced during the numerical357

time-integration process.358

The function S0(ǫx) was calculated numerically using quadrature rules
for integration, since a closed-form analytical expression is not available for
our choice of H(ǫx). We chose the value

σ =
√
gH0

(
10π

Lx

)
, (56)
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Figure 4: Panel (a): Envelopes of the WKB solution, scaled by their maximum value,
for the values of δ = ∆H/H0 = 0 (solid, black), 1/30 (solid, dark grey), 1/15 (solid, light
grey), 1/10 (dotted), 2/15 (dashed), 1/6 (dash-dotted). Panel (b): Relative difference
(Rd) between the numerical solution and the WKB solution after five wave periods vs.
δ.
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for the frequency of the waves. If the bottom is flat, this choice represents359

the frequency of a sinusoidal wave whose wavelength is a factor of five360

shorter than the longest wavelength that fits in the domain.361

After time-stepping was completed, the relative L2 difference

Rd =

∫ Lx

0
(ηNum − ηWKB)

2 dx
∫ Lx

0
(ηWKB)2dx

, (57)

was calculated where ηNum and ηWKB represent the numerical and WKB η362

fields, respectively. The integrals were evaluated using the Fourier expansion363

coefficients of each integrand (obtained with FFT).364

Close agreement between the two solutions in the limit that ∆H → 0 is365

illustrated in Figure 4 where we have introduced the non-dimensional pa-366

rameter δ = ∆H/H0. Panel (a) shows the shape of the spatially dependent367

wave amplitude function, H− 1

4 , for several choices of δ, and panel (b) shows368

the decline in the relative difference between the analytical and numerical369

solution as δ → 0. The agreement was found to improve somewhat by in-370

creasing the domain length while keeping the depth fixed, but the difference371

was less than an order of magnitude.372

3.5. Grid-convergence study using a simulation of 1D wave-topography in-373

teraction374

We next focus our attention on a 1D simulation of nonlinear and dis-375

persive waves repeatedly propagating over a ridge with the Fourier method.376

Since analytical solutions are not available to confirm the validity of the377

results, we rely on grid-doubling experiments to illustrate the method’s378

convergence in the well-resolved limit.379

We begin by considering a periodic domain of length Lx = 2 km. The
depth profile is given by

H(x, y) = H1 −∆He−5(x−0.5Lx
100

)4 , (58)

with H1 = 10 m and ∆H = 2 m, reflecting a pre-dominantly flat bottom
with a 2 m tall ridge in the center of the domain. The simulation was
initialized using the initial conditions

η(x, 0) = η0e
−(x−0.25Lx

100
)2 , (59)

u(x, 0) =

√
g

H1
η(x, 0) , (60)
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Figure 5: Results for the 1D wave-topography interaction run. Panel (a): Plot of the
initialization, showing the topography z = −H(x) and the initial free surface displace-
ment z = η(x, 0). Panels (b)–(d): η at t = Tfinal at resolutions Nx = 256 (solid, light
grey), Nx = 512 (dash-dotted), Nx = 1024 (dashed), Nx = 2048 (dotted), Nx = 4096
(solid, black). Panel (c) is zoomed-in on the leading solitary wave, and panel (d) is
zoomed-in on a section of the dispersive tail. In panels (b)–(d), the variable η has been
made dimensionless by dividing by the off-ridge water depth, H1 = 10 m.
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with η0 = 1 m, representing a single wave of elevation, initialized to propa-
gate in the positive x-direction with the off-ridge long wave speed

√
gH1. A

schematic diagram of the initialization is shown in Figure 5(a). The govern-
ing equations were stepped forward until a final time of t = Tfinal = 605 s
was reached. The final time was chosen such that a linear wave would tra-
verse the length of the domain three times. The time-step was taken to
be

∆t =
1

2

∆x√
gH1

, (61)

and numerical instabilities were prevented by employing the spatial filtering380

methodology discussed in Section 2.4.381

In this simulation, nonlinearity plays a key role in the evolution of the382

flow. The initial wave immediately begins to steepen, and the steepening is383

further enhanced due to shoaling as the wave propagates over the ridge (not384

shown). Dispersion then acts to balance the nonlinearity and prevent the385

formation of shocks. The final result is a collection of three solitary waves386

propagating in the positive x-direction followed by a dispersive wavetrain.387

These solitary waves are similar in shape to the sech2(·) solitons predicted388

by Korteweg-de Vries (KdV) theory (Whitham, 1999). It can be shown that389

such solitons are approximate solutions to the governing equations (1)–(3)390

under the assumption of a flat-bottom, as was done for a similar system by391

Wei and Kirby (1995).392

Details of the η field at t = Tfinal at several resolutions are depicted393

in Figure 5(b)–(d). Inspecting the various plots suggests that grid conver-394

gence has been reached when Nx = 2048 grid points are used, since doubling395

the resolution once more to Nx = 4096 only yields minute differences in the396

fine-scale features of the η field (see Figure 5(d)).397

In light of the strong results on exponential convergence reported in398

Section 3.2, the question arises as to whether the same properties can be399

expected for time-dependent problems, such as the one presented in this400

section. Unfortunately, only an algebraic rate of convergence can be ex-401

pected due to the fact that the Leapfrog time-stepper is only second-order402

accurate. This fact has been verified by computing the relative L2 differ-403

ence (Rd) between each of the solutions shown in Figure 5 and the solution404

computed with Nx = 8192 grid points (not shown). It was found that Rd405

satisfied the algebraic relation Rd = O(N−3
x ), and thus the convergence rate406

is not exponential.407
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3.6. A 2D simulation of wave generation by flow over topography408

In our next test-case, we present a two-dimensional simulation of forced409

surface waves interacting with bottom topography to illustrate the numeri-410

cal model’s applicability to real-world problems in water wave dynamics. It411

is quite well known that when the inflow speed approaches the long wave412

speed, upstream propagating nonlinear waves are generated. This process413

is referred to as resonant generation (Grimshaw and Smyth, 1986). Non-414

dispersive shallow water dynamics for flow over axisymmetric obstacles has415

been discussed by Esler et al. (2007) using finite volume methods.416

The physical parameters were set to: g = 9.81 m s−2, f = 0 (no ro-
tation), and Lx = Ly = 2 km, reflecting a (periodic) square domain. The
grid was taken to have 2048 points in the x-direction and 256 points in
the y-direction. Modal filtering in each direction was carried out using the
parameters discussed in Section 2.4. The depth profile was taken to be

H(x, y) = H1 −∆He−5(x−0.5Lx
100

)4−5(
y−0.5Ly

200
)4 , (62)

with H1 = 20 m and ∆H = 2 m. This is essentially a two-dimensional
version of the depth-profile used in Section 3.5, i.e., a predominantly flat
profile with a square-shaped ridge in the center of the domain. The sim-
ulation was initialized from quiescent conditions and forced by adding the
body forcing term hFx to the right-hand side of equation (2), where

Fx =

{ √
gH1

β
, 0 ≤ t < 10 s

0, t ≥ 10 s
(63)

and β = 50/3 s is a time-scale. The forcing is constant in space and piece-417

wise constant in time. Its effect is to induce a flow over the topography in the418

positive x-direction, that is constant upstream of the topography. The value419

of β was chosen so that the final upstream velocity is equal to three-fifths420

of the off-ridge long wave speed, and hence the flow is formally sub-critical.421

Since the addition of body forcing simply represents a source term in the422

governing equations, it was added to the time-stepping procedure using a423

straight-forward explicit evaluation.424

Snapshots of the developing η-field are shown in Figure 6. In addition425

to a trapped wave of depression generated over the ridge, an upstream-426

propagating wavefront of elevation (with a slightly depressed tail, or pos-427

sibly a second wave) can be seen emanating from the ridge, and travelling428

westward. This wavefront can be seen losing amplitude as time progresses.429
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Figure 6: Fixed time snapshots of the free surface displacement at (a) t = 60 s, (b)
t = 80 s, (c) t = 100 s, and (d) t = 120 s in the 2D wave generation by flow over
topography run. The contours shown have values of η = ±0.1 m, ±0.2 m, ±0.3 m,
±0.4 m, ±0.5 m, ±0.6 m, ±1 m, where η = −1 m is shown in black and η = +1 m is
shown in white. The solid-white line is the depth contour H = 19.5 m, indicating the
location of the ridge.
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Figure 7: Panel (a): 1D slices of the snapshots presented in Figure 6 through the line
y = 1 km. Panel (b): Snapshots of the η field for an analogous 1D simulation, where
variations in y have been neglected. In each panel, a single curve corresponds to a time
in Figure 6, with the lowest curve giving a slice through the snapshot taken at t = 60 s
and the uppermost curve giving a slice through the snapshot taken at t = 120 s. Each
curve has been shifted upwards by 3/40 (t−60) units. Dashed vertical lines represent the
location of the maximum height of the upstream-propagating wavefront at each snapshot
from the 1D simulation. The variable η has been made dimensionless by dividing by the
ridge height, ∆H = 2 m.
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This is due to to radial spreading, or in other words geometric decay. The430

extent of this decrease in amplitude (energy density) due to geometric de-431

cay can be illustrated qualitatively by comparing this 2D simulation to an432

analogous 1D simulation where variations in the y-direction are neglected.433

This comparison is carried out in Figure 7, where it can be seen that in the434

1D case (panel (b)), the upstream-propagating wave front better retains its435

amplitude than in the 2D case (panel (a)) since there is no radiation in the436

y-direction.437

3.7. A 2D simulation of wave propagation over a shoal438

In our final test case, we follow the evolution of a wave front with an
initially one-dimensional shape as it propagates over a shoal that is parti-
tioned by a deep region in the center of the domain. The physical parameters
(g, f, Lx, Ly) were chosen to be the same as in the previous test case (see
Section 3.6), as were the filtering parameters. The grid was taken to have
1024 points in each direction. The depth-profile is

H = H1 −∆H

[
sech

(
y − 0.5Ly

500

)
− e−(

r0
200 )

2
]
. (64)

Here, r0 =
√

(x− 0.5Lx)2 + 0.25(y − 0.5Ly)2, H1 = 20 m, and ∆H = 10 m.
The depth-profile is shown in Figure 8. The initial conditions were set to

η(x, y, 0) = η0e
− (y−0.1Ly)2

3200 , (65)

v(x, y, 0) =

√
g

H1
η(x, y, 0) , (66)

u(x, y, 0) = 0 . (67)

where η0 = 0.25 (H1 −∆H), reflecting a one-dimensional (symmetric in x)439

wave propagating in the positive y-direction at the linear long wave speed.440

Snapshots of the evolving η field are shown in Figure 9. By t = 70 s441

(panel (b)), the symmetry in the x-direction has been broken due to refrac-442

tion as the portion of the wave front propagating over the deep region in443

the center of the domain (near x = 0.5Lx) has a faster effective wave speed444

than the portion of the wave front that is propagating over the shoal. As445

the initial wave shoals, solitary waves emerge. The solitary waves are most446

evident in panels (b),(d), and (f) when the main wave front is situated on447

top of the shoal. At the later times (panels (c)-(f)), an interesting inter-448

ference pattern of relatively weak waves follows the main wave front due to449

wave scattering and solitary wave fissioning induced by the topography.450
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Figure 8: The depth-profile used in the wave propagation over topography run, corre-
sponding to equation (64).

While the decrease in relative amplitude of the portion of the main451

wave front over the deep region to that over the shallow region is intuitive,452

it should be noted that the absolute wave amplitude decreases over the453

deep region as well. This effect occurs due to the bending of wavefronts454

towards the lines of constant depth, which leads to a divergence of energy455

over the deep region. Thus, there is a corresponding focusing of energy near456

0.3Lx < x < 0.4Lx and 0.6Lx < x < 0.7Lx that is more clearly seen in plots457

of u, the x-component of velocity, shown at times t = 70 s, t = 210 s, and458

t = 350 s in Figure 10. In field situations, this energy focusing could have459

implications for wave-boundary-layer interactions. It is also interesting to460

note that both the solitary wave widening and fissioning is qualitatively461

consistent with KdV theory (Whitham, 1999).462

4. Conclusions463

In this manuscript, we have introduced a Fourier pseudospectral method464

for solving a dispersive shallow water model of the Boussinesq type in pe-465

riodic domains with variable water depth. In line with previous studies466

(Eskilsson and Sherwin, 2005; Karniadakis and Sherwin, 2005), we dis-467
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Figure 9: Fixed time snapshots of the free surface displacement at (a) t = 0, (b) t = 70 s,
(c) t = 140 s, (d) t = 210 s, (e) t = 280 s, (f) t = 350 s in the wave propagation over
topography run. The contours are given by 33 equally spaced values between −1.25 m
(black) and 2.75 m (white). The dotted and solid white lines correspond to the H = 12 m
and H = 18 m depth contours, respectively, illustrating the shape of the topography.
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Figure 10: Fixed time snapshots of the u field (x-component of velocity) at (a) t = 70 s,
(b) t = 210 s (c) t = 350 s in the wave propagation over topography run, corresponding
to Figures 9(b),(d),(f), respectively. The contours are given by 21 equally spaced values
between −0.25 m s−1 (black) and 0.25 m s−1 (white). The dotted and solid white lines
correspond to the H = 12 m and H = 18 m depth contours, respectively, illustrating the
shape of the topography.

cussed two approaches for the time-discretization method, the so-called468

“coupled” and “scalar” approaches. Although both methods are stable, the469

scalar approach reduces the dimension of the resulting linear systems to be470

solved by a factor of 2, and transforms the problem of time-stepping mixed471

space-time derivatives to a familiar pressure-type elliptic problem. Practi-472

cal details of implementation were discussed, including details of obtaining473

efficient solutions to the aforementioned linear systems with numerical lin-474

ear algebra techniques and pre-conditioning, or discrete Fourier transforms475

where appropriate. Other practical considerations, such as filter stabiliza-476

tion of aliasing/nonlinearity-driven numerical instabilities were outlined as477

well. In light of these methods presented, it is clear that FFT-based meth-478

ods can be extended to problems involving variable bathymetry and can479

also be a highly-accurate means of solving elliptic problems with variable480

coefficients if used in conjunction with iterative linear system solvers and481

pre-conditioning.482

Our numerical methodology was validated in one dimension against ap-483

proximate analytical solutions for the cases of dispersive short waves over a484

flat-bottom and long waves over a slowly varying bottom. The exponential485

convergence rate of the Fourier spatial discretization method was verified486

in two-dimensions by comparing numerical solutions to the exact solution487
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of an elliptic problem. The accuracy of our global Fourier method was also488

compared to the local nodal DG-FEM method at various orders of accuracy.489

For a fixed number of degrees of freedom, the Fourier method was shown490

to have superior resolution and energy-conserving characteristics than the491

DG-FEM method in all cases considered. Of particular note was that in492

the low-order DG-FEM simulations (N < 4), the short waves are rapidly493

dissipated by numerical diffusion, yielding a highly inaccurate numerical494

solution for the physical scenario. These results indicate that the Fourier495

method is an excellent choice of benchmark for lower-order methods (DG-496

FEM, FVM) that can be used in much more general geometries than the497

Fourier method. Furthermore, the high accuracy of the Fourier method al-498

lows classical water-wave solutions to be explored without the uncertainty499

associated with the numerical dissipation inherent in low-order methods,500

thus allowing for a rational set of hypotheses to be constructed for testing501

against field data.502

Grid convergence of the Fourier method was illustrated for the test-case503

of a long wave steepening and propagating over topography leading to the504

emergence of solitary waves. This test case was important because it showed505

that in the well-resolved limit the numerical model is accurate in situations506

where both dispersion and nonlinearity are prevalent in the dynamics.507

A two-dimensional wave dynamical simulation of waves driven by flow508

over topography was carried out to illustrate how the proposed numerical509

model may be used in practical GFD problems. A set of rich wave dynamics,510

including topographically-trapped waves, upstream propagating waves, and511

waves radiating in the cross-stream direction, was observed. Our results512

agreed qualitatively with past analytical and numerical results of resonant513

wave generation by flow over topography (Grimshaw and Smyth, 1986; Esler514

et al., 2007).515

A second two-dimensional simulation corresponding to a long wave prop-516

agating over a shoal was carried out. Interesting linear and nonlinear phe-517

nomena such as wave scattering, steepening, and the emergence of fissioning518

solitary waves (only in sufficiently shallow regions) rapidly broke the sym-519

metry of the initial conditions resulting in a rather complicated final wave520

field with a variety of fine scale features.521

There are many possible improvements and extensions one could make to522

the methodology presented here. Improvements include using a higher-order523

time discretization method for improved accuracy and using an adaptive fil-524

tering procedure to minimize the amount of filtering required for numerical525
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stability. Another significant improvement would come from using a scal-526

able multigrid/domain decomposition approach for the elliptic problem so527

that higher resolution simulations can be carried out on parallel computing528

clusters. Extensions include replacing the Fourier discretization in one or529

both of the spatial directions with a Chebyshev pseudospectral discretiza-530

tion (Boyd (2001)) so that simulations in periodic channels and specialized531

closed basins may be carried out. The particular case of an annular circular532

basin with application to mid-sized lakes has been explored in Steinmoeller533

et al. (2012, in press). Another possible extension would solve a multi-layer534

extension of the system (1)-(3) (e.g. de la Fuente et al. (2008); Cotter et al.535

(2010)) as a suitable model of internal waves in a density-stratified fluid.536

Finally, one may extend the DG-FEM methodology presented in Section 3.3537

to the case of two-dimensional arbitrary closed basins using triangulated un-538

structured grids to model wave dynamics in real-world lakes with a realistic539

representation of the coast-line.540

Appendix A. Discontinuous Galerkin Spatial Discretization Method541

In 1D, the augmented system (1)-(3) & (13) reduces to

∂h

∂t
+
∂(hu)

∂x
= 0 , (A.1)

∂(hu)

∂t
+
∂f(h, u)

∂x
= γ

∂z

∂x
, (A.2)

γ
∂2z

∂x2
− z = −∂a

∂x
, (A.3)

where f(h, u) = hu2 + 1
2
gh2, γ = H2

6
is a constant, and a = −∂f

∂x
.542

Following the developments on nodal discontinuous Galerkin methods in
Hesthaven and Warburton (2008), we partition the domain Ω = [0, L] into
K elements Dk = [xkl , x

k
r ], k = 1, · · · , K. Each element is then discretized

onN+1 points, using the Legendre-Gauss-Lobotto polynomial interpolation
nodes. We proceed by representing the numerical solutions locally on each
element in terms of the Lagrange interpolating polynomials, i.e.,

hk(x) =

N+1∑

i=1

h(xki )ℓ
k
i (x) , (hu)k(x) =

N+1∑

i=1

h(xki )u(x
k
i )ℓ

k
i (x) , (A.4)
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with

ℓki (x) :=

N+1∏

m=1
m6=i

xk − xkm
xki − xkm

, (A.5)

and N is the order of the polynomial interpolants.543

To apply the DG-FEM method in strong form, we multiply equations
(A.1)-(A.2) on each element k by a member of the space of local test func-
tions ℓkj ∈ V k

h = {ℓki }N+1
i=1 and integrate the flux terms by parts twice,

yielding the semi-discrete equations

(ℓki , ℓ
k
j )Dk

dhkj
dt

+ (ℓki ,
dℓkj
dx

)Dkhukj =
[
ℓkj

(
(hu)k − (hu)∗

)]xk
r

xk
l

, (A.6)

(ℓki , ℓ
k
j )Dk

dhukj
dt

+ (ℓki ,
dℓkj
dx

)Dkfk
j =

[
ℓkj

(
fk − f ∗)]xk

r

xk
l

(A.7)

+ γ(ℓki ,
dℓkj
dx

)Dkzkj − γ
[
ℓkj

(
zk − z∗

)]xk
r

xk
l

,

where we have introduced the local inner product (u, v)Dk =
∫ xk

r

xk
l

uv dx,

and it is understood that repeated indices are summed over. To recover an
explicit semi-discrete scheme, (A.6)–(A.7) are multiplied by the inverse of
the local mass matrix (ℓki , ℓ

k
j )Dk which is typically small ((N +1)× (N +1))

and inexpensive to invert. The numerical flux functions f ∗ and (hu)∗ are
chosen to be given by the local Lax-Friedrichs flux, e.g.,

f ∗ = {{f}}+ λ

2
JuK , (A.8)

where
λ = max

u∈[u−,u+]
|u|+

√
gH , (A.9)

approximates the maximum linearized wave speed. The quantity {{f}} =544

(f−+f+)/2 represents the average of f ’s interior value f−, on the edge of the545

element, and its exterior value f+, on the edge of the neighboring element,546

and JuK = (u−n̂− − u+n̂−) is the jump in u across the element interface547

with unit outward-pointing normal n̂−. In accordance with Eskilsson and548

Sherwin (2005), z∗ was chosen to be given by the central flux, i.e., z∗ = {{z}}.549

For a thorough discussion of nodal discontinuous Galerkin methods with a550

more detailed introduction to the notation used here, we refer the reader to551

Hesthaven and Warburton (2008).552
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As explained in Hesthaven and Warburton (2008), in order to solve the
Helmholtz problem (A.3) with DG-FEM, it is necessary to introduce the
auxiliary variable q =

√
γ ∂z
∂x

and rewrite equation (A.3) as the first-order
system

√
γ(ℓki ,

dℓkj
dx

)Dkqkj − (ℓki , ℓ
k
j )z

k
j −

[
ℓkj

(√
γqk −√

γq∗
)]xk

r

xk
l

, (A.10)

= −(ℓki ,
dℓkj
dx

)Dkakj +
[
ℓkj

(
ak − a∗

)]xk
r

xk
l

(ℓki , ℓ
k
j )Dkqkj =

√
γ(ℓki ,

dℓkj
dx

)Dkzkj − √
γ
[
ℓkj

(
zk − z∗

)]xk
r

xk
l

, (A.11)

where we choose a∗ = {{a}}, z∗ = {{z}}, together with the stabilized (or553

penalized) central flux q∗ = {{q}}− τJzK, τ > 0 for the auxiliary variable, q.554

The penalty term’s purpose is to remove the null eigenmode that would be555

present if τ = 0, (Hesthaven and Warburton, 2008). Our choice of numerical556

fluxes for the elliptic problem is essentially a stabilized version of the fluxes557

used by Bassi and Rebay (1997) for a DG-FEM discretization of the viscous558

terms in the compressible Navier-Stokes equations. In the results presented559

in Section 3.3, we use the value τ = 1 for the stabilization parameter. It is560

known that the convergence rate of the solutions to the discretized elliptic561

problem is sensitive to the choice of τ , and ideal scalings for τ , dependent562

on grid-spacing and polynomial order, have been suggested in the literature563

(Eskilsson and Sherwin, 2005; Hesthaven and Warburton, 2008). However,564

since the DG-FEM simulations presented in Section 3.3 are well resolved,565

we do not expect our choice of τ to affect the quality of the solutions.566

A sparse-matrix representation of the DG-FEM spatial discretization567

operator represented by (A.10)–(A.11) is then constructed using the tech-568

niques explained in Hesthaven and Warburton (2008). As in Section 2.3.1,569

the LU factors of the matrix are computed and stored in the pre-processing570

stage of the numerical code and re-used at each time-step.571

The semi-discrete equations are time-stepped using an algorithm that572

is analogous to (22)–(27) with the exception that the fourth-order low-573

storage explicit Runge-Kutta (LSERK) method (see Hesthaven and War-574

burton (2008)) is used in place of the second-order Leapfrog method.575

Appendix B. Derivation of the WKB solution576

To begin, we introduce the slowly-varying spatial coordinate

χ = ǫx , (B.1)
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where ǫ is a small parameter. If we substitute this change of variables into
the model equations, retain only terms of order ǫ2 and lower, one can then
find the variable-speed 1D wave equation in terms of η

ηtt − ǫ2 (gHηχ)χ = 0 , (B.2)

where H = H(χ) only. It is worth noting that this approximate equation577

does not contain any dispersive terms such as those included in the full578

system (1)–(3), so the approximation is only expected to be accurate for579

waves that are sufficiently long with respect to the water depth.580

The solution, η(χ, t), may then be separated into the product of a sinu-
soidal time-dependent component and an unknown spatial structure, ψ(χ),
as

η = ψ(χ)e−iσt , (B.3)

where we are considering waves of a single frequency, σ. The spatial struc-
ture of the free surface is then assumed to have the form of the WKB ansatz

ψ(χ) = ei(
S0
ǫ
(χ)+S1(χ)+ǫS2(χ)+··· ) , (B.4)

such that

S0

ǫ
≫ S1 ≫ ǫS2 ≫ · · · , (B.5)

ǫS2 ≪ 1 , as ǫ→ 0 . (B.6)

Substituting the ansatz (B.4) into the wave equation (B.2) and solving the
resulting problems at orders 1 and ǫ yields the WKB solution

S0(χ) = ±
∫ χ

0

σ√
gH(ζ)

dζ , (B.7)

S1(χ) =
i

2
lnHS ′

0 =
i

2
ln σ

√
H

g
, (B.8)

where prime (′) denotes differentiation with respect to χ. Thus, we have

η(x, y, t) ∼ A(χ)ei(
S0
ǫ
(ǫx)−σt) , as ǫ→ 0 , (B.9)

where A(χ) = a0H
− 1

4 and a0 is an arbitrary constant. Since the problem is
linear, it a straight-forward task to show that

u(x, y, t) =

√
g

H
η(x, y, t) . (B.10)
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