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Abstract

This note reports on the issue of spurious compressibility artifacts that
can arise when the popular pressure projection (PP) method is used for
unsteady simulations of incompressible flow using the symmetric interior
penalty discontinuous Galerkin (SIP-DG) method. Through a spectral anal-
ysis of the projection operator’s SIP-DG discretization, we demonstrate that
the eigenfunctions of the operator do not form a basis that allows for the
correct enforcement of the incompressibility constraint. This short-coming
can cause numerical instabilities for inviscid, advection-dominated, and den-
sity stratified flow simulations, especially for long-time integrations and/or
under-resolved situations. To remedy this problem, we propose a local
post-processing projection that enforces incompressibility exactly, thereby
enhancing the stability properties of the method.
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1. Introduction1

Recent interest in the possibility of using the discontinuous Galerkin (DG)2

method for numerical solutions to the unsteady incompressible Navier–3

Stokes (INS) equations has been sparked by its success in compressible4
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flow simulations [1, 2, 3] and its many attractive features such as geometric5

flexibility, stencil locality/compactness, upwind-biased fluxes for advection-6

dominated flows, and high-order accuracy [3, 4, 5]. The desire for DG so-7

lutions is further motivated by the Ladyzhenskaya-Babuska-Brezzi (LBB)8

stability problem that plagues continuous Galerkin (CG) formulations due9

to spurious pressure modes, resulting in stability for only certain spatially10

mixed-order velocity-pressure formulations [6, 7, 8, 9].11

However, since the INS equations do not comprise a hyperbolic system12

it is unclear if the DG method can be used to recover consistent, stable,13

and accurate numerical solutions in general, since DG methods only weakly14

impose continuity across elemental interfaces, typically by solving Riemann15

problems to specify an appropriate numerical flux function [3]. Indeed, for16

the spectral element ocean model (SEOM), Levin et al. [10] chose a DG17

formulation for scalar transport equations but not for the momentum equa-18

tions, citing the ill-posedness of the Riemann problem as a central difficulty.19

On the other hand, some studies have successfully obtained DG solutions,20

using the pressure projection (PP) method, to some standard test cases21

for the INS equations, such as the Taylor-Green Vortex [3, 11, 12], laminar22

Kovasznay flow [3], and flow past square [11, 12] and circular [3] cylin-23

ders. These test cases, however, typically focus on short time integrations24

or highly viscous/damped situations, and the long-term stability properties25

of the methods remain unclear.26

More work needs to be done to explore weakly damped and inviscid cases27

with DG, since some promise has already been shown using the closely-28

related spectral multi-domain penalty method (SMPM) in the vertical co-29

ordinate for simulations of stratified turbulence in incompressible flow [13].30

The SMPM differs from the DG method only in the sense that a colloca-31

tion formulation is used instead of a Galerkin formulation, but the other32

basic concepts of the schemes (e.g., locally high-order polynomial methods,33

continuity between subdomains only weakly enforced) are the same [14].34

Here, we focus on difficulties encountered when using the standard PP35

for the INS equations in velocity-pressure formulation for longer time inte-36

grations of non-hydrostatic stratified flow simulations under the Boussinesq37

approximation (BA). These difficulties are especially prevalent in under-38

to marginally-resolved inviscid or low-viscosity situations. The main con-39

tribution of this work is a spectral analysis of the DG PP operator that40

is furnished by the numerical calculation of the eigenvalues and eigenfunc-41

tions on a unit square domain with solid-wall boundary conditions. We also42
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demonstrate that a local post-processing projection can be used to exactly43

enforce incompressibility, thereby stabilizing the method for longer time in-44

tegrations. We argue that the results shown here are robust and apply to45

more general domains and meshes as well as to the three-dimensional INS46

equations.47

2. Methods48

2.1. Pressure Projection (PP) Method and its weak form49

The non-dimensional stratified INS equations under the BA are [15]

∂u

∂t
+∇ · (u⊗ u) = −∇p + 1

Re
∇2u− 1

Fr2
ρk , (1)

∇ · u = 0 , (2)

∂ρ

∂t
+∇ · (ρu) = 0 , (3)

corresponding to conservation of momentum (1) and mass (2), and scalar50

transport (3). Here, u is the dimensionless velocity field with components51

(u(x, t), w(x, t)) (and x = (x, z)) in two dimensions, k is the unit vector52

pointing along the positive z-axis, and p = p(x, t) and ρ = ρ(x, t) are53

the dimensionless pressure and density, respectively. Re = UL/ν is the54

Reynolds number as a function of kinematic viscosity ν and typical velocity55

and length scales U and L, respectively. The Froude number is defined56

by Fr = U/
√
gL, where g is the gravitational acceleration, and we have57

chosen the advective time-scale T = L/U in our non-dimensionalization.58

The inviscid incompressible Euler (IE) equations are recovered in the limit59

Re → ∞, and the case of non-buoyancy-driven flow is recovered by taking60

Fr → ∞. The essence of the Boussinesq approximation (BA) is that in61

the momentum equations, the density is taken as a constant in all but the62

buoyancy term.63

The PP time-stepping algorithm has been thoroughly explained in the64

literature (see e.g., [16]). A very popular approach is the high-order stiffly-65

stable splitting algorithm due to Karniadakis et al. [17]. The method first66

forms a predicted velocity û by explicitly evolving the advection and buoy-67

ancy terms with a linear multi-step method. The projection step involves68

solving the following Poisson equation, along with suitable boundary con-69

ditions (see [17]), for the pressure p at time tn+1 = tn +∆t:70

∇ · ˆ̂u−∇ · û = −∆t∇2pn+1 . (4)
3



Here ˆ̂u, is an intermediate velocity that is formed after the pressure terms71

have been evolved, but before the viscous step. The constraint (2) is en-72

forced by removing the ∇ · ˆ̂u term in (4), thereby projecting the approxi-73

mate solution onto the space of approximately non-divergent velocity fields.74

Once pn+1 has been computed, the pressure gradient is evolved in the semi-75

discrete form of (1) to recover the corrected velocity field,76

ˆ̂u = û−∆t∇pn+1 , (5)

and the viscous terms can subsequently be evolved to recover un+1, often us-77

ing implicit time-stepping from the backward differentiation formula (BDF)78

family of time integrators1.79

In the context of DG methods, the difficulty highlighted in this work80

stems from the discretization of the left-hand side of (4), and we pre-81

suppose that the right-hand side is discretized via the nodal symmetric82

interior penalty DG (SIP-DG) method (see [3] for an overview and a MAT-83

LAB implementation). The weak DG formulation of the left-hand side can84

be found by considering the local solution to (4) on a particular element (or85

sub-domain of Ω) Dk (where k = 1, · · · , K), multiplying by a member of86

the space of local test-functions {φkj}
Np

j=1 and integrating by parts to yield87





∫

∂Dk

(

φkj
ˆ̂u
)∗

· n̂ dx−
∫

Dk

ˆ̂uk · ∇φkj dx



−





∫

∂Dk

(φjû)
∗ · n̂ dx−

∫

Dk

ûk · ∇φkj dx



 ,

(6)
where superscript ∗ denotes an appropriate numerical flux function cho-88

sen to impose weak continuity across element interfaces in a way that is89

consistent with the underlying dynamics of the INS equations.90

We notice that the PP method results in simply removing the first two91

terms in eqn. (6). Thus, the divergence-free constraint is only being imposed92

upon the corrected velocity ˆ̂u in a weak and local sense, and the overall93

impact on the resulting DG scheme remains unclear. Here, we attempt to94

understand the effects of using the PP with DG via a numerical eigenvalue95

analysis as explained below.96

1In the DG framework, this last step is usually discretized using the SIP-DG formula-
tion of the implicit viscosity operator

[

1− (β0∆t/Re)∇2
]

subject to the no-slip boundary
condition u = 0 on solid boundaries [3, 11, 12], where β0 depends on which BDF method
is used.

4



2.2. Numerical Method for the Eigenvalue Analysis97

Beginning with the nodal DG implementation of the INS solver presented in98

[3], we have computed the eigenvalues of the PP operator P : û 7→ un+1 that99

carries out the following linear operations in a single MATLAB function:100

1. Given the input û, solve for pn+1 using the SIP-DG discretization of101

the Poisson problem (4) with the ∇ · ˆ̂u term dropped.102

2. Calculate the discretized form of ∇pn+1, and use eqn. (5) to obtain ˆ̂u.103

3. If Re is finite, advance the viscous term using SIP-DG discretization104

of the viscosity operator to recover the output, un+1.105

If Re is infinite, set un+1 = ˆ̂u.106

The corresponding function-handle is then passed into MATLAB’s eig107

eigenvalue solver that calculates eigenvalues using the implicitly-restarted108

Arnoldi method implemented in the ARPACK Fortran77 library [18]. It is109

worth noting that since the pressure variable p is not a prognostic flow vari-110

able and its purpose is to simply enforce incompressibility on u (see [16]),111

it is treated as an auxiliary field by the P operator.112

The domain under consideration is the closed unit square Ω = [0, 1]2113

subject to no normal flow (no slip) boundary conditions for the inviscid114

(viscous) case. For a domain with solid walls only, the Poisson problem (4)115

is subject to Neumann conditions only, and there is no unique solution [17].116

To address this issue, we have adopted the approach of [19], where a small117

additive scalar unknown is added to (4) in order to impose the additional118

constraint of zero mean pressure. Alternatives to this approach, including119

null singular vector removal, are possible as well. See [14] for an overview120

in the context of the SMPM method.121

Eqn. (4) itself is solved by computing the LU -factorization of the dis-122

crete Laplacian during pre-processing for re-use during each eig iteration.123

Throughout this note, we have chosen to solve the linear systems directly.124

We leave the issue of using an iterative linear solver, and the associated125

complexities (e.g., pre-conditioning), to a future work.126

3. Results127

3.1. DG Simulations using the PP method128

We have carried out long-time integrations of the homogeneous (ρ = constant,129

Fr → ∞) form of (1)-(2) using the nodal DG implementation in [3] and130

found spikes in the solution that form at element interfaces and eventually131
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lead to numerical instability. Modal filtering [3] alleviates the issue some-132

what, but does not prevent instabilities in general. Plotting the divergence133

∇ · u suggests the issue is related to spurious compressibility artifacts near134

element interfaces that are not zero to numerical precision. This behaviour135

is a consequence of the fact that incompressibility is only imposed in a local136

weak sense, and hence the numerical solution is inconsistent with the INS137

equations since ∇ · u 6= 0 to working precision.138

For stratified flow simulations under the BA, the situation is worse139

since the presence of an active density tracer, ρ, in the vertical momen-140

tum equation implies that any numerically-driven perturbation to ρ will141

cause spurious vertical motion. In under-resolved cases, we found that spu-142

rious compressions caused regions of high density to artificially emerge over143

regions of low density at certain element interfaces, resulting in unphysical144

grid-scale Rayleigh-Taylor (RT) instabilities [15] that destroyed the numer-145

ical solution. In marginally- to well-resolved simulations, the unphysical146

RT instabilities appear to be suppressed. However, the long-term stability147

properties are again uncertain due to non-zero divergence.148

3.2. Spectral analysis of the DG PP operator and proposed remedies to the149

problem150

The unit square domain Ω was partitioned into 8 uniform triangular ele-151

ments, and the eigenvalues and eigenfunctions (velocities), (λi,uφi)
Ne

i=1
of the152

PP operator P were computed for polynomial order N = 8 corresponding153

to Np = 45 nodal points on each triangle [3], for a total of 360 grid points154

yielding Ne = 720 eigenmodes. The eigenspectrum was computed for a155

variety of Re as well as for the inviscid case. Each velocity field was scaled156

such that
∫

Ω

‖uφi‖2 dx = 1. Although this analysis has been carried out for
157

triangular elements, the procedure extends straightforwardly to other types158

of elements, e.g., quadrilaterals.159

To assess the properties of the eigenmodes, in Fig. 1 we plot the quantity160

Di =





∫

Ω

[∇ · uφi]2 dx





1

2






max

1≤j≤Ne





∫

Ω

[

∇ · uφj
]2
dx





1

2







−1

, (7)

the scaled L2-norm of divergence in each velocity eigenfunction uφi against161

its corresponding eigenvalue, λi. The integrals in eqn. (7) were evaluated162

using the orthogonality of the basis functions in the local modal expansion.163
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Perhaps the most revealing result in Fig. 1 is the inviscid case shown in164

panel (c). Since the inviscid P operator includes only the projection and165

not viscosity, we find that there are only two possible eigenvalues, λ = 1166

and λ = 0, each with its own collection of corresponding eigenfunctions.167

To understand the structure of the degeneracy of the eigenspectrum of the168

inviscid projection operator, it is useful to recall the Helmholtz decomposi-169

tion that guarantees any vector field may be decomposed into the sum of170

curl-free and divergence-free components171

u = −∇ϕ +∇× (ψj) , (8)

where the unit vector j = (0, 1, 0) appears since we assume u lies in the172

xz-plane. The P operator should map vector fields of the general form (8)173

to the divergence-free part ∇× (ψj). Two special cases that arise from this174

fact are: (1) If uφi is an eigenfunction of P with no curl-free part, then P175

should not change it, hence λ = 1, and (2) if uφi is an eigenfunction of P176

with no divergence-free part, then P should map it to 0, i.e., it belongs in the177

null space (λ = 0) of P. Therefore, the inviscid λ = 0 eigenmodes should178

be interpreted as a basis of curl-free velocities while the inviscid λ = 1179

eigenmodes should be interpreted as a basis of divergence-free velocities.180

The key thing to notice here is that the discretized eigenfunctions form-181

ing a basis for incompressible velocity fields are themselves not divergence-182

free since they have Di 6= 0. In Fig. 2, we show contour plots of the scaled183

absolute value of the divergence of two such eigenfunctions to illustrate184

this undesired behaviour that is worst at element interfaces. In light of185

these results, it is not clear if we can represent an incompressible velocity186

field using such a basis and expect it to be genuinely divergence-free. The187

finite Re cases in Fig. 1 show that viscosity introduces eigenmodes with188

0 < λ < 1. These eigenvalues between 0 and 1 should be expected since in189

the simplified case of periodic boundary conditions, the viscosity operator190

would effectively multiply the sinusoid eikx by [1− (β0∆t/Re)k
2]. Although191

viscosity does not yield eigenmodes with smaller values of Di, sufficiently192

small Re will ensure that the eigenspectrum is structured such that smaller193

eigenvalues (λi < 1) are assigned to eigenfunctions with larger values of Di.194

This can be seen as beneficial since the most poorly behaved eigenmodes195

are marginalized in the eigendecomposition of P. Of particular note is the196

absence of O(1) values of Di for λi ≈ 1 in the Re = 1 and Re = 40 cases.197

Despite these results, it remains unclear how much viscosity is required198

to attain long term stability in general because viscosity does not correct199
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the problem of spurious divergence. Instead, it provides a rather general200

mechanism for damping small-scale numerical artifacts.
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Figure 1: Di, eigenfunction’s scaled maximum L2-norm of divergence vs. corresponding
eigenvalue λi at selected Re and in the inviscid case, Re → ∞ (panel (c), grey dots).
For finite Re, we set β0∆t = 10−3.

Figure 2: Absolute value of divergence ∇·uφi
(re-scaled to have maximum value of 1) for

two selected eigenfunctions of the inviscid P operator (see Fig. 1 (c)) with corresponding
eigenvalue λi = 1 (to within 5 decimal places).

201
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Approaches adopted in the literature to circumvent the problem high-202

lighted above avoid the PP altogether, and ensure that the weak form of203

the divergence-free constraint explicitly appears in the scheme along with204

a suitable numerical flux function ([20, 21, 22]). Cockburn et al. [22] use a205

pressure stabilization term in their numerical flux choice for the weak DG206

form of (2) along with a post-processing procedure to obtain exactly non-207

divergent approximate velocity fields to solve the steady INS equations. The208

method of [20, 21] recovers a well-posed Riemann problem in the imposition209

of (2) by considering a numerical flux function from the artificial compress-210

ibility equations2. However, the method appears somewhat costly since all211

terms are discretized implicitly in time and exact Riemann problems must212

be solved numerically by nonlinear Newton iterations at each time-step.213

Other possibilities lie with the recently discussed class of hybridizable DG214

(HDG) methods [23, 24], that impose strong continuity only in the normal215

component of numerical fluxes. Finally, for strictly two-dimensional flow, a216

streamfunction-vorticity formulation could be adopted. This idea has been217

explored in a DG context in [25].218

In the present work, we have followed up on the theoretical developments219

in [22] wherein it is proven that stable equal-order DG schemes for the220

steady INS equations require (i) a pressure stabilization term in the DG221

discretization of (2), and (ii) a local post-processing operation to recover an222

exactly non-divergent velocity field from the weakly non-divergent velocity223

field. Here, we attempt to apply these results in the unsteady case. In224

the SIP-DG framework discussed above, condition (i) is already satisfied225

since the SIP-DG discretization of the Laplacian uses a stabilization (or226

penalty) term in the numerical flux function of an auxiliary vector variable227

q = ∇p to penalize large jumps in p. Here, the SIP-DG numerical flux228

functions are given by p∗ = {{ p }} and q∗ = {{∇p}} − τJpK, where τ > 0229

is the penalty parameter [3], and the operators {{·}} and J·K denote the230

average and jump across an interface, respectively. Therefore, it appears231

that a missing ingredient in the scheme discussed above is the local post-232

processing projection, and we have sought to rectify this issue.233

A locally non-divergent velocity basis on the reference element can be234

constructed by an appropriate differentiation of the modal basis functions235

ψi that, as in [3], are orthogonal polynomials of order N . In two-dimensions,236

2The artificial compressibility equations can be recovered by adding a ǫ2 ∂p
∂t

term to
the left-hand side of 2, where ǫ = U/c is a Mach number and c is an artificial sound
speed.
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the velocity basis is taken to be237

uψi
= ∇× (ψij) , i = 1, · · · , Nm , (9)

where Nm is the number of local modal basis functions (we omit the ψi =238

constant mode), and j = (0, 1, 0). The unit vector j appears here since the239

resulting velocity basis should lie in the xz-plane, i.e., the same plane as240

the velocity field. By construction, we have ∇ · uψi
= 0 for i = 1, · · · , Nm,241

and we have verified that the local discrete differential operators satisfy242

this condition to numerical precision. Although the basis (9) is a set of243

vectors and not scalars as is common with DG and CG methods, a Galerkin-244

type projection can be furnished on the reference element by considering an245

arbitrary divergence-free velocity field v expanded in terms of the basis (9):246

v =
Nm
∑

j=1

cjuψj
, j = 1, · · · , Nm . (10)

The cj ’s can be computed by taking the dot product of (10) with a mem-247

ber of the divergence-free velocity basis uψi
, integrating over the reference248

element Γ, and inverting the resulting linear system of equations249

Mijcj = li , (11)

where

Mij =

∫

Γ

uψi
· uψj

dx , li =

∫

Γ

uψi
· v dx . (12)

Therefore, any arbitrary velocity u defined on the reference element can250

be projected onto the space of exactly non-divergent velocities by solving251

(11), with v replaced by u in (12), and summing the right-hand side of (10)252

to recover v, an exactly divergence-free approximation to the non-divergent253

part of u. As in [22], the operation of mapping u to v is completely local and254

can be carried out in an element-by-element fashion once the local velocity255

on each element has been transformed to the standard element’s coordinate256

system. Should this projection be extended to three dimensions, it is worth257

noting that special care should be taken to ensure that the solenoidal basis258

spans all of three-space. The corresponding basis would need to be made259

as much as three times larger than the basis (9), since those vectors are260

restricted to a single plane.261
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In Fig. 3, we show the strong impact that applying the post-processing262

projection has on the eigenspectrum of the P operator. All eigenmodes263

except those corresponding to the null space of P satisfy ∇ · uφ = 0 to264

numerical precision.
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Figure 3: Like Fig. 1, but the post-processing operator has been applied at the end of
the usual P operation.

265

3.3. Validation in two space dimensions266

We have modified the INS solver presented in [3] to solve the incompressible267

Euler (IE) equations under the Boussinesq Approximation (BA). The ad-268

vection and source terms are evolved with the third order Adams-Bashforth269

method. The Lax-Friedrichs/Rusanov advective flux is employed in the DG270

discretization of the advective terms, as in [3]. An exponential cut-off filter271

function (see [3]) is applied to the local modal coefficients of the full so-272

lution fields after the advective step to prevent polynomial aliasing errors273

from driving weak instabilities.274

We have successfully validated the method for the stratified IE BA equa-275

tions against the Fourier spectral method benchmark laboratory-scale in-276

ternal solitary wave (ISW) solutions to the Dubreil-Jacotin-Long (DJL)277

equation found in [26]. Although the solution profile simply translates to278

the right with constant speed c = 0.1042 ms−1, the dynamics are driven by279

nonlinear and non-hydrostatic effects. The geometry is a given by a sim-280

ple rectangle with dimensions 5 m×0.15 m taken to be periodic in x and281

bounded by rigid horizontal walls at z = 0 and z = −0.15 m; neverthe-282

less, this test-case is challenging since the horizontal:vertical aspect ratio283

is ∼33:1, and high amounts of vertical resolution are required to properly284

resolve the thin pycnocline.285
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We have constructed a structured grid of 1, 089 rectangular elements286

and carried out DG simulations using polynomial orders N = 4 (marginally287

resolved) and N = 8 (well-resolved), both with the local projection (WLP)288

discussed in Sec. 3.2 and without (NLP). Here, we have used rectangular289

elements since we were able to reach the requisite resolution with a smaller290

number of elements than would be necessary with a structured or unstruc-291

tured triangular mesh. For the cases considered here, the added compu-292

tational time associated with including the local projection was negligible.293

The local modal filtering parameters were taken to be (s,Nc) = (4, 4) in294

the N = 4 case and (s,Nc) = (8, 6) for N = 8. Here, s is the order of295

the exponential filter function and Nc is the cut-off order, below which no296

filtering takes place. In particular, these parameters imply that for the297

N = 4 simulations, 9 of 25 modes are unaffected by the filter, while 30 of 81298

modes are unaffected in the N = 8 case. The initial solution fields (ρ, u, w)299

were interpolated from the equispaced Fourier grid to our DG grids via a300

band-limited spectral interpolation code3.301

The results shown in Fig. 4(a)-(b) demonstrate that the method accu-302

rately captures the propagation of the ISW. The long-term stability prop-303

erties of the methods are assessed in panel (c) where we plot the L2-norm304

of the divergence vs. time in each case. The N = 4 NLP case becomes305

unstable by t = 160 s, and the N = 4 WLP case becomes unstable by306

t = 240 s (not pictured). This result indicates that local projection has307

improved the stability properties of the N = 4 scheme somewhat, but it is308

not sufficient for long-term stability in this case due to element-scale noise309

introduced as a result of under-resolution. Both the WLP and NLP N = 8310

cases appear long-term stable, since the L2-norm of divergence in the NLP311

case demonstrates a damped limit-cycle type behaviour for times longer312

than those reported in Fig. 4 (not shown). The two stable runs from Fig. 4313

were integrated out to a final time of t = 600 s, when the wave has travelled314

a distance of 62.52 m (or ≈ 12.5 domain lengths). A more complete set315

of test cases (including viscous simulations) with more thorough analysis316

of results and details on the numerical solver will become available in a317

forthcoming publication.318

3The code bandLimFourierInterp is freely available at:
https://github.com/dsteinmo/bandLimFourierInterp/.
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Figure 4: The position of the thin pycnocline is indicated by three contour lines of non-
dimensional density ρ for the DJL ISW test case at times (a) t = 0 s and (b) t = 540 s
using the N = 8 WLP method. Panel (c) shows the L2-norm of divergence vs. time
for the methods: N = 4 WLP (black, solid), N = 4 NLP (black, dashed), N = 8 WLP
(grey, solid), and N = 8 NLP (grey, dashed).
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4. Conclusions319

Through a numerical eigenvalue analysis, we have shown that the eigen-320

functions of the DG PP operator are themselves not divergence-free. As321

a result, our numerical simulations have shown that instabilities can occur322

due to the presence of spurious compressibility artifacts. The prominence of323

these instabilities appears to be worse in poorly resolved simulations. It was324

found that even if incompressibility is enforced exactly after each time-step325

by a local post-processing projection, that polynomial orders N > 4 were326

required for long-term stability in the test-case considered here. It may be327

possible to further remedy the stability issues highlighted here. Remedies328

discussed in other works include considering the artificial compressibility329

equations to formulate a suitable numerical flux function [20, 21], or pursu-330

ing an HDG spatial discretization method [23, 24].331
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