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Abstract

We present a numerical solution procedure for a two-dimensional Boussinesq-
type shallow water model on annular domains using pseudospectral dis-
cretization methods, including practical implementation details such as spec-
tral filtering to prevent aliasing-driven instabilities and efficient numerical
linear algebra techniques. The numerical model’s potential for predicting
and simulating wave motions in mid-sized lakes is illustrated with three test
cases: 1) wave diffraction around an island and near-shore focusing; 2) the
formation, propagation and destruction of wave trains and solitary-like waves
in rotating basins; and 3) the influence of bottom bathymetry on wave for-
mation and propagation from a Kelvin-seiche.

Keywords: Shallow water, Pseudospectral methods, Physical limnology,
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1. Introduction

While the motion of fluids in the natural environment spans length scales
from centimeters to thousands of kilometers, the majority of numerical mod-
els used in practical applications (weather prediction, pollution prediction
and control) rely on the fact that naturally occurring fluids tend to be den-
sity stratified, and hence restrict motion to be predominantly horizontal, or
in other words to occur in superimposed layers. Other factors, such as the
Earth’s rotation and the vertical thinness of the fluid layer relative to hor-
izontal length scale, further contribute to making these naturally occurring
flows dominated by horizontal motions. The numerical solution of layered
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models, though these are an approximation of the full equations of motions,
thus forms an important class of applied numerical analysis problems. While
the shallow water equations ([1],[2]), the prototype of the layered model, are
an example of a classical, nonlinear hyperbolic system, many natural physical
extensions lie beyond the classical hyperbolic theory. Examples include mod-
els of wetting and drying [3], multi-layer models [4], sediment morphological
models [5], and models that attempt to model the dispersive behaviour of
naturally occurring waves ([6], [7]).

Most mid-latitude lakes in the ice free seasons are primarily forced by the
wind, which injects energy on large scales. These basin scale motions are
subsequently cascaded over a vast range of length scales, eventually leading
to dissipation of the mechanical energy at the Kolmogorov length scale ([8],
[9]). While some of the motions are quite irregular, many are coherent, with
prominent examples being internal waves, Langmuir circulations and surface
waves. The models considered in the following focus on internal waves in
lakes which can occur on length scales ranging from kilometers to tens of
meters.

The model equations under consideration here are the same as those
used by de la Fuente et al. [6] in their study of the evolution of basin-scale
Poincaré and Kelvin waves in a two-layer rotating basin using the finite vol-
ume method (FVM). The system of model equations represents a so-called
Boussinesq-type system that is best described as an extension of the tradi-
tional shallow water equations to include weakly non-hydrostatic, i.e., disper-
sive, corrections to the hydrostatic pressure. Boussinesq-type models have
previously been used to study dispersive and nonlinear effects in internal
waves by Tomasson and Melville [10] and Brandt et al. [11]. The original
concept of a Boussinesq-type model can be traced back to the approximation
made by the model’s name-sake, Boussinesq [1], in an effort to model solitary
waves. An important consequence of using a Boussinesq-type model over the
traditional shallow water model is that shocks, which are ubiquitous in clas-
sical nonlinear hyperbolic equation theory, are precluded by the dispersive
nature of the short waves. The exclusion of shocks has significant implica-
tions in potential numerical methodologies, since shock-resolving methods
([12],[13]) are no longer required to ensure numerical stability.

The main contribution of this work is the use of high-order pseudospec-
tral spatial discretization methods that are known to give the best accuracy
possible and excellent resolution characteristics (see Boyd [14] or Trefethen
[15]). Unlike the FVM that imparts inherent numerical dissipation to solu-
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tions [12], pseudospectral methods lack inherent dissipation, and the modeller
must specify a small amount of artificial dissipation using either a hypervis-
cosity term or a spectral filter in order to stabilize the scheme ([14],[16]).

Moreover, the methods developed in the following allow the numerical
modeling of closed (albeit specialized) basins. While circular basins may
seem to be an esoteric case, they form a well studied class of problems in
physical limnology dating back over a century ([17],[18]). High order numer-
ical methods for such basins allow the robustness of classical solutions to be
explored without the uncertainty associated with the inherent dissipation in
many low order methods. This, in turn, allows for a rational set of hypotheses
to be formulated for subsequent testing against field data.

The remainder of the manuscript is organized as follows. First the meth-
ods, including the model equations, are presented in section 2, including a
description of the practical issues of implementation (including filtering and
numerical linear algebra). This is followed by a presentation of model results
(section 3), sub-divided into three categories: 1) wave diffraction around an
island and near-shore wave focusing, 2) the formation, propagation and de-
struction of wave trains and solitary-like waves, and the effect of rotation, 3)
the influence of bottom bathymetry on wave formation and propagation. Fi-
nally, in section 4, conclusions drawn from our results are presented alongside
a summary.

2. Methods

The governing equations used by de la Fuente et al. [6] in their study of
internal waves in a circular basin for a single fluid layer are

∂h

∂t
+∇ · (hu) = 0 , (1)

∂(uh)

∂t
+∇ · ((uh)u) = −g′h

∂η

∂x
+ fvh+Nu, (2)

Nu =
H2

6

∂

∂x

(

∇ · ∂(uh)
∂t

)

, (3)

∂(vh)

∂t
+∇ · ((vh)u) = −g′h

∂η

∂y
− fuh+Nv, (4)

Nv =
H2

6

∂

∂y

(

∇ · ∂(uh)
∂t

)

. (5)
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where u = (u(x, y, t), v(x, y, t)) is the velocity field, h(x, y, t) = H(x, y) +
η(x, y, t) is the total layer thickness withH representing the undisturbed layer
thickness, and η is the interface displacement. Here we use the system (1)-(4)
as a simple model of the baroclinic mode for a two-layer fluid with upper and
lower layer densities of ρ1 and ρ2, respectively. The constants g′ = g(ρ2 −
ρ1)/ρ2 and f are reduced gravity and the Coriolis frequency, respectively. The
difference between the set of equations (1)–(4) and the traditional shallow
water model is the inclusion of the dispersive terms H2

6
∇(∇ · (uh)t) found

in the momentum equations (2) & (4) and labeled Nu and Nv, respectively.
The above system was first proposed by [11] in their study of internal waves
in the Strait of Messina. This system is derived by a perturbation expansion
in powers of the small dimensionless parameter µ = (H/L), and therefore is
only physically accurate if µ ≪ 1.

In this study, we rewrite the system (1), (2), (4) in non-conservative
form and in standard polar coordinates (r,θ) ∈ [rmin, rmax] × [0, 2π]. The
mixed space/time derivatives are removed from the system by introducing
the auxiliary scalar variable z = ∇ · ut and deriving an elliptic equation
for z by taking the divergence of the momentum equations, as was done by
Eskilsson and Sherwin [19] who solved a similar system of equations with the
discontinuous Galerkin finite element method (DG-FEM). The main benefit
of this approach over simply applying the same time-discretization scheme
to all the time-derivatives is that it reduces the dimension of the resulting
linear system to be solved at each time-step by a factor of two [19]. The
resulting augmented system is

∂h

∂t
+

1

r

(

∂(rhur)

∂r
+

∂(huθ)

∂θ

)

= 0 , (6)

∂ur

∂t
= ar + γ

∂z

∂r
, (7)

∂uθ

∂t
= aθ +

γ

r

∂z

∂θ
, (8)

∇γ · ∇z + γ∇2z = ∇ · a , (9)
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with

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
, (10)

∇2 =
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
, (11)

∇ · a =
1

r

(

∂(rar)

∂r
+

∂aθ
∂θ

)

, (12)

a = arr̂+ aθθ̂, (13)

we find that

ar = −ur

∂ur

∂r
− uθ

r

∂ur

∂θ
+

u2
θ

r
− g′

∂η

∂r
+ fuθ , (14)

aθ = −g′

r

∂η

∂θ
− fur − ur

∂uθ

∂r
− uθ

r

∂uθ

∂θ
− uruθ

r
, (15)

where γ = H2/6 is, in general, allowed to vary in space, and ur and uθ are
the radial and annular velocities, respectively. In moving from the system
(1)-(5) to (7)-(9), we have invoked the mild slope approximation ∇h ≈ 0 in
the non-hydrostatic term, so that

γ∇ (∇ · (uh)t) ≈ γh∇ (∇ · ut) . (16)

Such approximations are common in Boussinesq-type models ([6],[11]) where
high accuracy modelling of short-wave/topography interactions is not of pri-
mary concern.

The system is discretized in space using a Fourier pseudospectral method
in the annular direction and a Chebyshev pseudospectral method in the radial
direction. In our simulations, we always take rmin > 0 to avoid the singularity
and undesired clustering of grid points near r = 0 that are associated with
the standard polar coordinates mapping. It is worth mentioning, however,
that it is possible to reduce the amount of undesired clustering of Chebyshev
points near the origin by using a mapped Chebyshev grid that is only heavily
clustered near the outer boundary, as explored by Boyd and Yu [20].

The boundary conditions imposed are reflective wall conditions at the
inner and outer radii of the basin:

ur = 0 at r = rmin, rmax , (17)

∂η

∂r
= 0 at r = rmin, rmax . (18)
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A suitable time-dependent inhomogenous Neuman boundary condition for
the elliptic variable z is obtained by taking the dot-product between the vec-
tor form of the momentum equations (7)-(8) and the unit outward boundary
normal n̂ and solving for the normal derivative of z, i.e.,

∂z

∂n
= −a · n̂

γ
at r = rmin, rmax , (19)

where we have used the fact that u · n̂ = 0 at r = rmin,rmax.
The main basis for the spatial discretization method used here is the

so-called pseudospectral technique, described by Peyret [21]: differentiate in
the spectral space (i.e., the space of the expansion coefficients), and perform
products in physical space in a point-wise manner. A central difficulty that
arises from this “point-wise product” approach is that it results in aliasing
errors that, in turn, tend to drive weak numerical instabilities [13]. Even
stronger numerical instabilities may be driven by regions of high gradient
in the solution that form due to nonlinear steepening, and require some
amount of artificial numerical diffusion to ‘smooth out’ the solution and
retain numerical stability. To overcome these problems, we have employed a
spatial cut-off filter (see discussion below).

For speed and memory efficiency, Fourier and Chebyshev differentiation
are implemented with the Fast Fourier Transform (FFT). The elliptic prob-
lem (9) is solved iteratively with the generalized minimum residual method
(GMRES) using the LU-factorization of the second-order central finite dif-
ferences approximation [22] of the elliptic operator as a pre-conditioner in
order to reduce the iteration count to a reasonable number. For a discussion
of GMRES and pre-conditioning, see [23].

Once the spatial discretization has been addressed, the problem is reduced
to solving a system of ordinary differential equations in time that must be
discretized and stepped forward in time. This approach is often referred to
as the method of lines [15]. The temporal discretization was carried out with
the second-order accurate Leapfrog method. A spatial wavenumber cut-off
filter, similar to that used by Hesthaven and Warburton [13] for the DG-FEM
method, of the form

σ(k) =

{

1, 0 ≤ k < kcrit

exp
(

α
(

k−kcrit
kmax−kcrit

)s)

, kcrit ≤ k ≤ kmax

(20)

was used in both r and θ directions during time-stepping to prevent alias-
ing errors from driving weak numerical instabilities. Filtering was performed
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by multiplying the filter function σ(k) by the spectral coefficients of each
solution field (u, v, η) after each time-step. The spectral coefficients were
obtained using the FFT in the annular direction and a discrete cosine trans-
form (DCT) in the radial direction. The filtered solution fields were hence
obtained using the appropriate inverse transform. The parameters α < 0,
s, and kcrit are tunable and, in general, their values must be determined
through experimentation.

3. Results

Model Parameters

In the results presented in this manuscript, the model resolution was given
by Nr = 256 radial (Chebyshev) points and Nθ = 1024 annular (equispaced,
Fourier) points. The spatial filtering parameters were typically taken to be:
kcrit = 0.15kmax, s = 4, α = ln 10−12, where kmax is the Nyquist wavenumber.

The GMRES convergence criterion was chosen to require the relative
residual to be smaller than 10−8. The number of GMRES iterations required
per time-step varied by simulation, but was typically between 9 and 16 and
fluctuated throughout run-time. A sudden growth in iteration count during
time-stepping tended to indicate that the simulation was approaching a nu-
merical instability, and thus that the model should be re-run with a different
set of filtering parameters to ensure stability.

The time-step ∆t was determined through experimentation, but the CFL
condition was always employed as a first guess or “rule of thumb”:

∆t ≤ min(r,θ){∆r, r∆θ}
Umax +

√
g′H

, (21)

where Umax = max(r,θ)

√

(ur,0)
2 + (uθ,0)

2 is the maximum speed of the initial

conditions.
The numerical methodology was validated against approximate analytical

solutions in one dimension and compared to numerical solutions in two di-
mensions obtained with the DG-FEM method (not shown) at various orders
of accuracy. The pseudospectral method presented here was found to have
better resolution and energy-conserving characteristics than the DG-FEM
method in all cases. In particular, many fine scale flow features found in the
results shown below are not present in the low order DG-FEM simulations,
likely because they are ‘smeared out’ by numerical diffusion.
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Test Case I: Wave diffraction around an island and near-shore focusing (here-
after, WDAINF)

In the first test case, the inner and outer basin radii were taken to be
rmin = 100 m and rmax = 1272 m, respectively. The mean fluid depth was
set toH = 10 m (constant), the reduced gravity was taken as g′ = 0.196ms−2,
and rotation was turned off (f = 0). The initial conditions were taken to be

η0 = e−0.5(y+600)2 , (22)

uθ,0 = 0 , (23)

ur,0 = 0 , (24)

representing a still fluid with a rectangular Gaussian interface perturbation
stretching across the west-east length of the basin centered about the line
y = −600 m. Here, subscript ‘0’ denotes the respective flow variable at time
t = 0.

Figure 1: Selected snapshots of the η field in the WDAINF test-case at times t =
0, 6.6, 13.3, 19.7 min (top) and t = 26.2, 32.8, 39.4, 45.9 min (bottom). The contour in-
terval is given by five evenly spaced contours between η = 0 (white) and η = ηmax

0
= 1

(black). The inner and outer basin radii are given by rmin = 100 m and rmax = 1272 m,
respectively. Rotation was turned off in this test-case (f = 0).

Since the fluid is initially at rest, the initial condition splits into two
component waves, one travelling northward and one travelling southward.
At t = 6.6 min, the southward propagating wave begins to strengthen as it
propagates longshore and approaches the southern end of the basin. Mean-
while, the northward propagating wave is diffracting around the circular is-
land centered at (x, y) = (0, 0). At t = 13.3 min, the initially northward
propagating wave is beginning to focus as it approaches the northern end of
the basin, while the initially southward propagating wave has reflected off
the southern coastline and has begun propagating northward, now focused
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as a predominantly single egg-shaped elevation wave. The process continues
for all other times shown, with the focused waves spreading and undergoing
wave-wave interactions with waves propagating in the opposite direction.

Test Case II: The formation, propagation and destruction of wave trains and
solitary-like waves, and the effect of rotation (hereafter, FPDWT)

In our next test case, the physical parameters were chosen such that the
idealized circular basin would be similar to the physical situation of Lake
Kinneret, Israel by inferring approximate values from the data presented in
[24]. To that end, the physical parameters were chosen as follows: rmax =
8435 m, rmin = 1 km, g′ = 0.024525 m s−2, H = 12.8 m, f = 7.8828 ×
10−5 s−1. Under these parameters, the Rossby deformation radius is LD =√
g′H/f = 7107 m, which is quite similar to the distance between the inner

and outer basin radii.
The initial conditions are taken to be

η0 = ηmax
0 e−10−7(r−rmax)

2
−50(θ−π

2
)
2

, (25)

uθ,0 =

√

g′

H
η0 , (26)

ur,0 = 0 , (27)

representing a coastally localized interfacial perturbation propagating in the
annular direction at the long internal wave speed

√
g′H .

In Figures 2 and 3 the maximum amplitude of the initial distrubance was
taken to be 0.01H and 0.25H , respectively to illustrate the effect of nonlin-
earity on a coastally-propagating wave in a lake similar to Lake Kinneret.

In Figure 2, the effects of nonlinearity are negligible, and as a result no
steepening occurs. By t = 14 h, the initial shape of the disturbance has
spread out considerably and a region of interfacial depression follows the
primary elevation wave. By t = 28 h, the region behind the depression has
become the highest point of interfacial elevation, and the region of largest
amplitude. This process of the wavefront losing energy to the interior of
the basin by long Poincaré waves continues throughout the evolution. At
subsequent times, the resulting wave field is best described as a nearly basin-
scale wavefront followed by an undular tail, with the wavelength decreasing
towards the rear of the tail.

In Figure 3, the effects of nonlinearity play a key role in the evolution of
the wave field. By t = 7 h, the initial disturbance has steepened up to a near
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shock. However, the formation of the shock is prevented by the dispersive
terms in equations (2)-(4). When nonlinear steepening and dispersion are
in balance, a collection of high-frequency solitary-like waves can be observed
in the wave field; however, this is difficult to discern in Figure 3. When the
flow is animated, it appears that two-dimensional interactions between the
solitary-like waves occur, and that the waves lose energy by interacting with
the interior of the basin. As in the linear case (Figure 2), the elevation at the
front of the wave eventually decays sufficiently so that the elevated region
behind the interfacial depression becomes the region of largest amplitude in
the basin. After sufficient time has passed, solitary-like waves can be found
in this secondary region of elevation due to nonlinear steepening, and the
process continues with a further loss of energy downstream.

Figure 2: Evolution of an initial interfacial perturbation propagating in the counter-
clockwise longshore direction in the FPDWT test case with f = 7.8828 × 10−5 s−1,
rmin = 1 km, rmax = 8345 m. Snapshots were taken at t = 0, 7, 14, 21 h (top) and
t = 28, 35, 42, 49 h (bottom). The maximum amplitude of the perturbation was taken to
be ηmax

0 = 0.01H . The contour interval is given by five equally spaced values between
−0.03 ηmax

0
(white) and 0.375 ηmax

0
(black).

Figure 3: Like Figure 2, but with ηmax

0 = 0.25H .
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Figure 4: 1D slices of the snapshots presented in Figure 3 through the circles (a) r =
rmax = 8435 m and (b) r = 2268 m. In each panel, a single curve corresponds to a time
in Figure 3, with the lowest curve giving a slice through the initial condition (t = 0 h)
and the uppermost curve giving a slice through the snapshot taken at t = 28 h. The slices
have been shifted in such a way that the main wave-front is centered about θ = 0, and η

has been made dimensionless by dividing by the undisturbed layer thickness H .

A more detailed look at the early time nonlinear evolution for the case
when ηmax

0 = 0.25H is shown in Figure 4. Figure 4(a) reveals the key role
that dispersion plays in the early evolution of the wave field: disallowing a
shock in favour of a train of dispersive shortwaves and a coherent solitary-
like wave. At later times, the primary wave-front is seen losing energy to
its tail wave (of elevation). This effect was observed by Stastna et al. [25]
and Helfrich [26] in simulations of the evolution of solitary waves affected by
rotation. A comparison of panels (a) and (b) reveals decay in amplitude of
the wave as we move inwards from the coast (r = rmax). Also visible is the
fact that the portion of the wave in the interior of the basin leads the portion
at the edge, due to the boundary curvature’s influence on the portion of the
wave nearest to the coast.

We now turn our attention to the effects of f -plane rotation on the evolu-
tion of the wave-field for an initial interfacial perturbation of fixed amplitude.
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In Figure 5, f is almost doubled to 1.4544× 10−4 s−1, reflecting the Coriolis
frequency at the North Pole, the highest value of f possible on Earth. In
this case, the Rossby deformation radius is LD = 3852 m, or about half-way
between the inner and outer basin radii.

Figure 5: Like Figure 2, but with ηmax

0 = 0.25H and f = 1.4544× 10−4 s−1.

Due to the linear analysis performed by Stocker and Imberger [18], we
expect increasing f to result in the strengthening of the linear Kelvin mode,
thereby weakening the interactions between our coastally propagating dis-
turbance and the interior of the basin. Indeed, this effect is expressed in
our results in two main observations: firstly, it is found that the length of
time required for the primary wavefront to lose energy to its tail is increased
substantially when compared to Figure 3; and secondly, the outward spread-
ing of the intial disturbance to near basin scales takes considerably longer.
Both of these effects are attributable to the relative strengthening of the
Kelvin mode compared to the corresponding free Poincaré modes predicted
by linear theory. This result may also be interpreted in terms of the Rossby
deformation radius, LD: a smaller value of LD lowers the effect of bound-
ary curvature, leading to a scenario more akin to a Kelvin wave propagating
along a straight coastline, hence there are fewer radiating Poincaré waves.
These effects can be visualized more clearly by directly comparing slices of
the wave field at fixed times between the two simulations corresponding to
f = 1.4544× 10−4 s−1 and f = 7.8828× 10−5 s−1 with ηmax

0 = 0.25H . This
comparison is done in Figure 6. It can be seen that the simulation with the
higher rotation rate maintains a coherent leading wave for twice as long as the
lower rotation rate case. Furthermore, the steepening of the secondary wave
is decreased in the high f case. Finally, in the high f case significantly more
short wave activity upstream of the leading disturbance is evident (especially
for the final three times shown).
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Figure 6: 1D slices of the snapshots presented in Figures (a) 5, and (b) 3 at r = rmax =
8435 m In each panel, a single curve corresponds to a time in Figure 3, with the lowest
curve giving a slice through the initial condition (t = 0 h) and the uppermost curve giving
a slice through the final snapshot. The slices have been shifted in such a way that the
main wave-front is centered about θ = 0, and η has been made dimensionless by dividing
by the undisturbed layer thickness H .

Test Case III: The wave formation and propagation from an internal Kelvin-
seiche and the influence of bottom bathymetry. (hereafter, IKS)

In the final test case, we consider the evolution of an initially at rest, basin
wide linear tilt in the density interface. The corresponding initial conditions
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for a west-east tilt are:

η0 =
ax

rmax

, (28)

uθ,0 = 0 , (29)

ur,0 = 0 , (30)

where a is the maximum amplitude of the tilt. The physical parameters
(f, g′, H, rmax, rmin) are given by the same values used in Test Case II, in-
tended to mimick the real-world situation of Lake Kinneret under summer
stratification conditions.

In the case where f = 0 (no rotation), one would expect a single basin-
scale periodic standing wave (or seiche) to result [2]. However, In the present
case where f = 7.8828×10−5 s−1 > 0 (Northern Hemisphere), we expect the
ensuing basin-scale dynamics to be driven by the lowest frequency rotating
gravity mode from the linear theory, i.e., the Kelvin mode [18]. The ensuing
cyclonic motion is typically referred to as a “Kelvin-seiche” [27].

Snapshots of this Kelvin-seiche motion at fixed times are shown in Fig-
ures 7 and 8 corresponding to initial tilt amplitudes of a = 0.1H and
a = 0.25H , respectively. A comparison of the two figures reveals the ef-
fect of nonlinearity due to an increase in initial tilt-amplitude. In Figure 8,
the effects of nonlinear steepening are visible as the clustering of η-contours
at later times and the emergence of long “filament waves” stretching across
the basin (particularly at t = 10.67 h and t = 18.67 h). As in Test Case II,
the formation of shocks does not occur due to the dispersive nature of the
model equations (the same dispersive effects would preclude shock formation
in an actual lake).

Some information about the effect of nonlinearity, and the details of the
wave field can be obtained from the line plots shown in Figure 9. It can
be seen that strongly non-sinusoidal waveform shapes occur in the larger
amplitude case (panels (a) and (c)), with some short wave generation at
later times. In contrast, the smaller amplitude case is nearly sinusoidal, for
the times shown.

The final simulation shown here in Figure 10 (a) is intended to illustrate the
numerical model’s robustness in dealing with situations where the bottom of
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Figure 7: Selected snapshots of the η field in the IKS test-case with a = 0.1H at times
t = 0, 2.67, 5.33, 8.00 h (top) and t = 10.67, 13.33, 16.00, 18.67 h (bottom). The contour
interval is given by ten evenly spaced contours between η = ηmin

0 = −0.1H (white) and
η = ηmax

0
= 0.1H (black).

Figure 8: Like Figure 7, but with a = 0.25H .

the basin is not flat. Here, the depth profile was taken to be

H = H

(

1− 1

4

(

r

rmax

)2
)

, (31)

where H = 12.8 m. This profile reflects a lake with a bowl-shaped bottom
topography and is a reasonable idealization for the large scale bathymetry
of typical, real-world, mid-sized lakes. The effects of bottom topography are
best observed by comparing the run that includes topography (Figure 10 (a))
to the same run but with a flat bottom (Figure 10 (b)). We compare these
two runs at later times when considerable differences in the wave fields have
had time to develop. Since the two depth profiles are similar near the interior
of the basin and most different at the edge of the basin, a primary difference
between panels (a) and (b) in Figure 10 is in the position of the main
wave front. With the parabolic bottom topography, the long internal wave
speed

√

g′H(x, y) is lower near the edge of the basin than in the interior
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Figure 9: Scaled η at r = rmax = 8435 m (panels (a) and (b)) and r = 6167 m (panels (c)
and (d)) versus θ corresponding to Figure 8 (panels (a) and (c)) and Figure 7 (panels (b)
and (d)). In each panel, the bottom-most profile corresponds to the initial conditions while
the top-most profile corresponds to the bottom rightmost panel in Figures 8 and 7. The
interfacial displacement η has been made dimensionless by dividing by the undisturbed
layer thickness H .

(essentially a WKB approximation due to the gradual change of depth),
therefore we expect the near-edge wave front to travel more slowly than
in the flat bottom case. Furthermore, a close comparison of the nonlinear
“filament” waves (Figure 10 (c) and (d)) that radiate towards the interior
of the basin from the primary wave front reveals that these waves undergo
wave refraction as they cross depth isolines. This effect is also expected,
since these waves are essentially propagating from a slow medium to a fast
one (from the edge of the lake to the interior).

4. Summary/Conclusions

A pseudospectral numerical method has been presented for solving a
weakly non-hydrostatic (Boussinesq-type) rotating shallow water system in
annular domains. The methodology employs a Fourier pseudospectral spa-
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Figure 10: (a) Selected snapshots of the η field in the IKS test-case with parabolic
bathymetry and ηmax

0 = 0.25Hmax at times t = 22.84, 25.53, 28.22, 30.91 h. The contour
interval is given by ten evenly spaced contours between η = ηmin

0
= −0.25Hmax (white)

and η = ηmax

0 = 0.25Hmax (black). Four (dotted) depth contours are super-imposed on
the plot, to indicate the shape of the bathymetry. (b) The same snapshots as (a) but
without topography, i.e., the same run as Figure 8 but at later times. Panels (c) and (d)
show a magnified comparison between the with-topography and no-topography runs at
t = 30.91 h.

tial discretization in the azimuthal direction and a Chebyshev pseudospec-
tral spatial discretization in the radial direction after the model equations
have been transformed to polar coordinates (r, θ). The main benefit of us-
ing a pseudospectral spatial discretization technique is the lack of inherent
dissipation that one frequently encounters in finite volume [6] or finite dif-
ference models. In the case of pseudospectral methods, the modeller must
prescribe a small amount of artificial dissipation to stabilize the scheme, typ-
ically with spectral filtering, as was done in this manuscript. The temporal
discretization method results in an elliptic pressure-type problem that must
be solved at each time step. Due to the fact that the linear system result-
ing from the spatial discretization of this elliptic problem is ill-conditioned,
large and dense (as is typical with pseudospectral spatial discretizations),
direct solution methods are not possible, and an approach using GMRES
(Krylov-subspace) iterations with pre-conditioning was proposed. The pre-
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conditioner was taken to be the second-order central differences approxi-
mation to the elliptic operator. Since finite differences yield sparse matrix
discretizations, the direct approach of calculating the LU -factorization of the
pre-conditioning operator for re-use during GMRES iterations was available
and employed.

The model was shown to be useful in performing simulations of internal
wave dynamics in mid-sized lakes during the ice-free seasons when lakes are
expected to possess a thermal stratification and (depending on their size) be
affected by the Earth’s rotation. The robustness of the numerical model was
illustrated by considering different wave dynamical situations corresponding
to different sets of initial conditions while varying the physical parameters
of the equations over a wide range of physically-relevant choices. These pa-
rameter choices included: 1) the strength of nonlinearity, i.e., extent of wave
steepening, 2) the strength of the Coriolis force, i.e., the angular frequency of
the rotating frame of reference, and 3) the bottom topography of the circular
lake.

The results of the simulations shown in this manuscript appeared to agree
well with intuition, well-known observations of wave dynamics in lakes and
experiments ([6],[9],[27]), as well as past numerical simulations ([11],[25],[26])
and mathematical theory [18] of internal waves. The main focus of our sim-
ulations was on the transfer of energy from large-(or basin-scale) waves to
small-scale features such as dispersive wavetrains and high-frequency solitary-
like waves. This agreement with previous results in the literature suggests
that the model presented here may well prove useful in practical physical
limnology applications. In particular, the lack of inherent numerical dissi-
pation allows for the construction of a set of rational hypotheses regarding
the behaviour of waves in mid-sized lakes that can be subsequently tested
against field data.

Several possible improvements and extensions of the work presented above
are possible. Possible improvements to the existing numerical methodology
include: 1) using a time discretization scheme with higher order accuracy
than the Leapfrog method used here, 2) adaptively tuning the filtering pa-
rameters to minimize the amount of numerical dissipation, and 3) using a
modified Chebyshev grid in the radial direction that is not heavily clustered
near r = 0 to allow for larger time-steps. One possible extension to the
model would extend the numerical solution procedure to a two-layer disper-
sive shallow water model (e.g. [6],[7]) which would serve as a more realistic
model for internal waves when compared to the single-layer, reduced-gravity
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model used here. A second important extension would be to solve either the
Boussinesq-type equations (1)-(4), or a multi-layer extension of them, with
an unstructured grid method to allow for simulations of the complex geom-
etry of real-world lakes. Since the system of equations is, at least in part, a
hyperbolic system of equations, a natural choice for such a spatial discretiza-
tion is the discontinuous Galerkin finite element (DG-FEM) method that is
often used to solve hyperbolic problems on unstructured triangular meshes
as a high-order extension of the finite volume method [13].
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