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1 Introduction

While the problem of flow past cylindrical obstacles in non-rotating fluids is a
classical and well documented one, its rotating counterpart that accounts for
the effects of differential rotation has only recently received attention. The
numerical study of [16] applied the paradigm of flow past a circular cylinder
on a β-plane to better understand the separation of the Gulf Stream at Cape
Hatteras and the interaction between the Antarctic Circumpolar Current
and various topographical features. Their numerical method utilized a finite
difference scheme on a channel of finite width with a piece-wise constant
approximation for the cylindrical obstacle. In agreement with earlier works,
they found that the β-effect inhibits boundary-layer separation and causes a
stagnant flow region to form upstream of the cylinder. They also found that

for large Re (Re > 200) and moderate β̂ (β̂ ∼ 10− 100) Rossby waves break
in the turbulent wake of the cylinder causing meandering separated zonal
jets to form at the shoulders of the cylinder. This observation is coincident
with the assertion of [14] that rotating turbulent flow has a tendency to
organize into a series of alternating zonal jets separated by the Rhines scale
LR = (U/β)1/2. They observed that these zonal jets initially form due to
boundary-layer separation, and extend quite far downstream depending on
how far the Rossby wave-breaking region extended.

Earlier works such as [13], [8], and [18] studied eastward flow past cylin-
ders on a beta-plane using models that were both laminar and inviscid. [18]
solved the steady model equations for flow past circular cylinders analytically
in an attempt to model eastward flow past an island, while [13] solved the
unsteady equations for flow past a symmetric Joukowski aerofoil numerically.
The study of [8] was an analytic study that also considered Ekman friction.
In each study, they observed a standing Rossby wavetrain downstream of the
cylinder in prograde flows. [13] and [8] also observed a blocked or stagnant
flow region upstream of the cylinder if the β-effect was sufficiently strong. [3]
carried out an experimental study where they observed that boundary-layer
separation was suppressed in eastward flows and enhanced in westward flows.

The main goal of the present study is to extend the works in the liter-
ature to include flow past elliptic cylindrical obstacles as well as both pro-
grade (eastward) and retrograde (westward) laminar flows using a β-plane
approximation. Here, we use the convention that the terms “prograde” and
“retrograde” are related to the direction of the Earth’s rotation. The flow
configuration is illustrated in Figure 1 for the case of uniform westward (ret-
rograde) flow past an elliptic cylinder having an aspect ratio of r = b/a
inclined at an angle of η with the positive x-axis.

The numerical method employed, which is fully explained in [15], repre-
sents a combination of spectral and finite difference methods. A boundary-
layer coordinate is introduced to accurately resolve the viscous boundary-
layer and a conformal mapping is used to address the geometry of the cylin-
drical obstacle, thus eliminating the need for a piece-wise constant approx-
imation as used in [16]. Although the numerical method is best suited to
capture the early flow development following an abrupt startup, we will
demonstrate that it also works well for moderate times. Focusing on this
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Fig. 1 The flow configuration for uniform westward flow.

time regime reinforces our underlying assumptions that the flow remains
laminar and two-dimensional. Lastly, a modified form of the traditional β-
plane approximation is proposed and implemented in our numerical scheme
to avoid computational difficulties that may arise when the traditional β-
plane approximation is applied to a large or unbounded domain.

The paper is organized as follows. The governing equations and non-
dimensional parameters are stated in section 2. Following this, a modified β-
plane approximation is introduced and discussed in section 3. Then, in section
4 the numerical method is briefly discussed. The results of our simulations are
presented and discussed in section 5. Finally, concluding remarks are given
in section 6.

2 Governing Equations

We assume that the dynamics are governed by the barotropic vorticity equa-
tion

∂ζ

∂t
+ u · ∇ (ζ + f) = ν∇2ζ, (1)

where ζ is the relative vorticity, u is the fluid velocity, ν is the kinematic
eddy viscosity of the fluid, and f = 2Ω sin θ ≈ f0 + βy is the usual β-
plane approximation to the Coriolis parameter which captures the meridional
variation of the Coriolis parameter from a central latitude θ0, where θ =
θ0 + y/R with R denoting the radius of the Earth.

The coefficient β = (2Ω cos θ0)/R is commonly interpreted as the merid-
ional gradient of the vertical component of planetary vorticity (divided by
R). A simpler, and perhaps more satisfying interpretation, is that β is equal
to the horizontal component of planetary vorticity 2Ω cos θ0 (divided by R)
that arises from the vector form of the planetary vorticity tilting term in the
three-dimensional vorticity equation. A direct correspondence between the
planetary vorticity tilting term and the β-term in the barotropic vorticity
equation is established in [17].

Since we are assuming that the flow is two-dimensional and incompressible
for all times of interest, it is useful to express the velocity in terms of a
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streamfunction, ψ, where u = k × ∇ψ. Choosing the length scale to be the
semi-major axis length a (or the cylinder radius for the case of a circular
cross section) and the velocity scale to be the zonal uniform far-field velocity
U0, the vorticity equation can be rewritten in terms of the non-dimensional
variables (x̃, ỹ) = (x, y)/a, ũ = u/U0, ζ̃ = aζ/U0, ψ̃ = ψ/(aU0), t̃ = U0t/a.
After dropping tildes, the non-dimensional vorticity equation becomes

∂ζ

∂t
+ J(ψ, ζ) + β̂

∂ψ

∂x
=

2

Re
∇2ζ, (2)

where

J(a, b) ≡
∂a

∂x

∂b

∂y
−
∂a

∂y

∂b

∂x
,

is the Jacobian operator, Re = 2aU0/ν is the familiar Reynolds number,

and β̂ = a2β/U0 is the non-dimensional β-parameter. The non-dimensional
β-parameter is often interpreted as an inverse Rossby number (see [4]), char-
acterizing the dominance of rotational effects. In [16], they demonstrate that

β̂ is also a measure of the extent to which fluid parcels are confined merid-

ionally. In particular, for β̂ < 1 the fluid parcels are largely free to propagate

in the meridional direction, while for β̂ ≥ 1, the β-effect acts as a strong
restoring force, causing the fluid parcels to propagate as Rossby waves.

Equation (2) is to be solved in conjunction with the streamfunction equa-
tion given by

ζ = ∇2ψ, (3)

to form a coupled closed system for the unknown flow variables (ψ, ζ).

3 The Modified β-plane

The traditional β-plane approximation f = f0 + βy can be problematic for
large or unbounded domains. Hence, we propose an alternate β-plane ap-
proximation given by

f = f0 + β
[

αR tanh
( y

αR

)]

, (4)

where α is a free parameter, and R is the radius of the Earth. For small y,
it is clear that (4) will recover the standard β-plane approximation to order
O((y/R)3). Equation (4), on the other hand, limits f to the interval:

2Ω(sin θ0 − α cos θ0) < f < 2Ω(sin θ0 + α cos θ0) ,

where Ω is the Earth’s rotation rate. The extent to which (4) behaves linearly
is controlled by the parameter α. Using equation (4) enables us localize the
linear variation of the Coriolis parameter, and thus allows us to solve the
problem on a much larger domain.

We remark to the reader that the main purpose of this modified ap-
proximation is to make the problem computationally simpler, and not to
improve on the accuracy of the traditional β-plane approximation. By arti-
ficially forcing f to tend to a constant for large y, we allow the barotropic
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vorticity equation to asymptotically take the form of the familiar non-rotating
two-dimensional vorticity equation that satisfies simple uniform far-field flow
conditions. Appropriate far-field conditions for the traditional β-plane ap-
proximation are investigated in [13].

Equation (4) can easily be incorporated into the governing equations by
simply replacing β in the dimensional barotropic vorticity equation (1) with
βsech2(y/αR). In non-dimensional form, this modification yields

∂ζ

∂t
+ J(ψ, ζ) + β̂sech2

( y

α̂

) ∂ψ

∂x
=

2

Re
∇2ζ, (5)

where the dimensionless parameter α̂ = α(R/a) now replaces α.
The physical impact of using the modified β-plane approximation is that

Rossby waves that are generated will be confined to a finite region centered
about y = 0 having a meridional extent which scales like α̂. Thus, including
equation (4) has the effect of creating a waveguide centered about the central
latitude which traps Rossby waves. Since α̂ is an arbitrary parameter, it
can be chosen to be large enough so that the trapped Rossby waves do not
compromise our numerical results for small to moderate times t.

As a final note we wish to comment on the steady-state far-field solution
to the barotropic vorticity equation (2) for the case of uniform eastward
flow. Adopting the linearization first proposed by [11], we have shown that
the asymptotic solution can be expressed in polar coordinates (r, φ) as follows

ζ ∼

(

C

√

2π

Rer
exp(−

Re

4
r[1 − cosφ])− β̂r

)

sinφ ,

for large r where C is an undetermined constant. The solution reveals that
apart from φ = π and a narrow wake region concentrated about φ = 0, the
vorticity grows without bound in accordance with the usual β-plane approx-

imation. By replacing β̂ with β̂sech2(r sinφ/α̂) this undesired growth will be
suppressed.

4 Numerical Method

The governing equations are rewritten in terms of the modified polar coor-
dinates (ξ, φ) which are related to the Cartesian coordinates (x, y) through
a mapping of the form x+ iy = H(ξ + iφ) where for a circular cylinder

H(ξ + iφ) = exp(ξ + iφ) ,

while for an elliptic cylinder

H(ξ + iφ) = cosh[(ξ + ξ0) + i(φ+ η)] ,

with tanh ξ0 = r. This choice of coordinates is better suited to the geometry
and makes the prescription of boundary conditions more natural since the
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cylinder surface is mapped to the line ξ = 0 and the infinite region exterior
to the cylinder is mapped to the semi-infinite rectangular strip

ξ ≥ 0 , −π ≤ φ ≤ π .

Another important feature associated with the mapping is that the radial
grid-spacing grows exponentially as we depart from the cylinder’s surface.
This feature is numerically beneficial because we can resolve the no-slip
boundary-layer with a much smaller number of grid points than if we were
to use a uniformly-spaced grid.

We choose to impulsively start the flow from rest at t = 0 since doing so
allows the structure of the no-slip boundary-layer to be taken into account
initially. We introduce the boundary-layer coordinate z = ξ/λ with λ =
√

8t/Re. This change of variables allows the physical grid to expand with
the boundary-layer as time progresses and thus helps to better resolve the
thin no-slip boundary-layer for small times. The governing equations are
then reformulated in terms of the boundary-layer coordinate z, along with
the scaled streamfunction Ψ = ψ/λ and vorticity ω = λζ. It is worth noting
that once the boundary-layer thickens appreciably, the switch can be made
back to the physical coordinate ξ.

The numerical technique utilized is a combination of a spectral and finite-
difference scheme. The technique is based on the method employed by [1] in
their study of unsteady uniform flow past a translating and rotating circular
cylinder. The method has proven to be an efficient approach for solving two-
dimensional flow problems past cylindrical bodies governed by the Navier-
Stokes equations expressed in a streamfunction – vorticity formulation as
demonstrated in [1] and [2].

The underlying idea is to expand the flow variables in a truncated Fourier
series and then to solve the resulting partial differential equations for the
Fourier coefficients using finite difference methods. The equations for the
vorticity Fourier coefficients, after being discretized in time using a Crank-
Nicolson scheme, are time-stepped by iteration. Spatial derivatives with re-
spect to the boundary-layer coordinate z, are discretized using second-order
centered differences. Determining the surface vorticity involves implement-
ing global constraints taking the form of integral conditions which are exact
and are derived in [6]. Marching schemes are used to update the streamfunc-
tion Fourier coefficients at each iteration, as done in [5]. Full details of the
numerical solution procedure can be found in [15].

5 Numerical Results

To confirm numerical convergence, numerous numerical experiments were
carried out with different grids and time steps. From these experiments we
have found the scheme to be both flexible and robust for physical parameter

values of Re ∼ 100− 2000 and β̂ ≤ 10. From our numerical experiments the
following values for the computational parameters were adopted for typical
runs: z∞ = 10, N = 51, L = 401, α̂ = 25 and ε = 10−6. Here, z∞ denotes
the outer boundary approximating infinity, N refers to the number of terms
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retained in the truncated Fourier series, L is the number of equally spaced
grid points used to discretize the boundary-layer coordinate z, and ε repre-
sents the convergence criterion that was applied to successive iterates of the

surface vorticity. For results presented in this paper with β̂ = 10, the number
of grid points in z was increased to L = 801 and the number of terms in the
truncated Fourier series was increased to N = 101. This change was made
because the former choice of parameters appears to overstate the influence
of Rossby wave breaking in the flow field.

Small initial time steps of∆t = 10−4 were used to advance past the abrupt
startup. With the passage of time ∆t was steadily increased to ∆t = 0.01
and then held constant for t ≥ 1. No stability difficulties were encountered
with the choice of grid and parameters listed above. Lastly, comparisons
with the numerical works of [7] and [5] for the non-rotating or f -plane case

(β̂ = 0) were carried out to validate our numerical results. Comparisons of
drag and lift coefficients with these studies were in good agreement. Since
these aforementioned studies both solved the steady equations, comparisons
could only be carried out at low Reynolds numbers (Re < 100).

We next present and discuss output from our numerical simulations for
selected parameter values.

5.1 Prograde Flow Past a Circular Cylinder

We first consider prograde (west-to-east) uniform flow past a circular cylin-
der. The motivation here is to remind the reader of the dynamics of the
classical problem of unsteady viscous flow past a circular cylinder at moder-
ately large Reynolds numbers (Re ∼ 200 − 1000), and also to illustrate the
impact that differential rotation, i.e. the β-effect, has on the flow. Numerical

results have been obtained for β̂ = 0, 1, 10. The non-zero values of β̂ are based
on typical oceanic velocities of U ∼ 10−1 ms−1 and typical beta-parameters
of β ∼ 10−11 m−1s−1 for obstacles having length scales of L ∼ 100 km and
300 km.

Figure 2 displays snapshots of the flow field for the case β̂ = 0 and
Re = 200 at various times. These plots reveal that boundary-layer separation
sets in well before t = 2 and the separation bubble initially grows in length
before eventually settling down. At t = 8 and t = 14 a symmetric pair
of vortices are visible illustrating the recirculating flow that occurs in the
separation region. We have observed that these vortices remain stable for all
times t considered. However, they do become unstable to small-amplitude
perturbations as we will later demonstrate.

With β̂ = 1 and Re = 200, shown in Figure 3, the β-effect is clearly
visible when contrasted with Figure 2. The downstream separation region is
noticeably smaller, as demonstrated analytically by [10], this is because the
β-effect suppresses boundary-layer separation by shifting the region of ad-
verse pressure gradient towards the rear stagnation point. A standing Rossby
wavetrain is also visible in the flow field downstream of the cylinder at times
t = 8 and t = 14. Wavetrains of this nature were also observed in the nu-
merical studies of [16] and [13], the analytical works of [18] and [8], as well
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Fig. 2 Streamlines of prograde flow past a circular cylinder for the parameters

Re = 200, β̂ = 0.

as in the experimental study of [3]. According to inviscid linear wave theory,
stationary Rossby waves in a prograde flow have a dimensionless wavelength

of λ = 2π/β̂1/2. In Figure 3, β̂ = 1 so the standing Rossby waves should
have a dimensionless wavelength of λ ≈ 2π. Our results appear to confirm
this prediction.

We next increase the Reynolds number to Re = 1000. The effect of a
significantly larger Reynolds number is that it weakens the dissipation in
the simulation by decreasing the effective viscosity, thereby increasing the
role of nonlinear advection of vorticity. Plotted in Figures 4, 5, 6 are the

cases having β̂ = 0, 1, 10, respectively. The changes observed in increasing β̂

from β̂ = 0 to β̂ = 1 are similar to the corresponding figures for Re = 200.
The primary difference is that the standing Rossby waves are more clearly
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Fig. 3 Streamlines of prograde flow past a circular cylinder for the parameters

Re = 200, β̂ = 1.

visible in the the flow field, both downstream and upstream. This is because
decreasing the effective dissipation amounts to less dampening of the Rossby
waves. In agreement with the studies of [13] and [8], a near stagnant flow
region is present on the upstream side of the cylinder.

Further increasing β̂ to β̂ = 10 shows a flow field dominated by Rossby
wave activity in Figure 6. Here, the stationary Rossby waves have a much
shorter dimensionless wavelength of λ ≈ 2. Linear wave theory also sug-
gests that any excited wave having a wavelength that is longer than that of
the standing waves should propagate to the west, while any wave having a
wavelength that is shorter than that of the standing waves should propagate
to the east. This theoretical prediction explains why Rossby waves are seen

throughout the flow field. Another important feature of the β̂ = 10 case is
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Fig. 4 Streamlines of prograde flow past a circular cylinder for the parameters

Re = 1000, β̂ = 0.

that breaking Rossby waves are present. A signature of wave-breaking is the
small vortices that are clearly visible away from the cylinder by t = 8 and
t = 14. Although it may not be obvious from examing Figure 6, when the
flow is animated these vortices are seen to originate from the crests of steep-
ening Rossby waves. [16] also observed Rossby wave breaking in their simu-

lations for β̂ ≥ 10. The suppressing nature of the β-effect on boundary-layer
separation is very strong in this case and thus results in a tiny separation
bubble on the cylinder’s lee side. This separation region is flanked by two
regions of very densely-packed streamlines which can be interpreted as west-
ern boundary currents arising from western intensification. [16] observed in

their simulations with β̂ ∼ 10 − 100 that these western boundary currents
separate entirely from the cylinder becoming zonal jets which extend quite
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Fig. 5 Streamlines of prograde flow past a circular cylinder for the parameters

Re = 1000, β̂ = 1.

far downstream and are maintained by breaking Rossby waves originating
from inside the cylinder’s wake. In our results, the cylinder’s wake remains
small and the two western boundary currents follow along the tiny separation
bubble where they appear to meet at y = 0. They do, however, extend a con-
siderable distance downstream as a single zonal jet due to breaking Rossby
waves away from the cylinder’s wake. The process of mean flow generation
by breaking Rossby waves is one that is well documented, especially in the
Earth’s atmosphere (see for example [12] or [9]).
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Fig. 6 Streamlines of prograde flow past a circular cylinder for the parameters

Re = 1000, β̂ = 10.

Figure 7 compares surface vorticity (ζ0) distributions for different β̂ values
for the case Re = 1000 at time t = 14. The surface vorticity is given by

ζ0 =

(

∂vθ
∂ξ

)

0

, (6)

and is of fundamental importance because a necessary condition for boundary-
layer separation is that ζ0 changes sign. A change in the sign of ζ0 corresponds
to a direction change in the tangential component of the velocity, vθ, near
the surface, i.e. a flow reversal.

A striking observation in these surface vorticity distributions is in the

extent to which the variations in ζ0 are excited when β̂ = 10. The case where
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β̂ = 1, however, appears to have similar magnitudes and gradients to that

in the non-rotating case when β̂ = 0. This discrepancy can be explained by
the increased western intensification near the surface of the cylinder when

β̂ = 10. In the case where β̂ = 1, western intensification only has a small
effect, and thus we can expect the surface vorticity to be similar to the case

where there is no differential rotation (β̂ = 0). The only visible difference

between the β̂ = 1 and β̂ = 0 cases is a shift in the distributions due to the
change in locations of the separation points.
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Fig. 7 Distributions of the surface vorticity ζ0 at t = 14 for the parameters Re =

1000 and β̂ = 0, 1, 10.

The flow patterns presented thus far have been symmetric with respect
to the x-axis. We expect that for moderately large Reynolds numbers the
flow should become unstable to small perturbations and then evolve into the
famous Von Kármán vortex street for the non-rotating case. This is precisely

what we observe in Figure 8 for Re = 1000, β̂ = 0 which displays vortices
alternately forming on the top and bottom halves of the cylinder backside
and ultimately shedding and being swept downstream. A disturbance was
introduced in this simulation by adding small amplitude random noise to the
Fourier coefficients of the flow variables (ψ, ζ) at time t = 1.

A very different pattern occurred when a similar disturbance was added

to the case having Re = 1000, β̂ = 1 shown in Figure 9. At times t = 2
and t = 3 we see a vortex forming and an asymmetric flow field beginning
to develop. As expected the growth of the vortex is suppressed and remains
attached and at t = 5 we see that the attached vortex appears to have moved
along the cylinder surface in the clockwise direction and another vortex has
formed near the front of the cylinder. In addition, on the northern side of
the separation region tightly packed streamlines are evident which suggests
that an intensified current is forming. Shortly after t = 5 our method became
numerically unstable.
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Fig. 8 Streamlines of perturbed prograde flow past a circular cylinder for the

parameters Re = 1000, β̂ = 0.

5.2 Retrograde Flow Past a Circular Cylinder

We now turn to retrograde (east-to-west) uniform flow past a circular cylin-
der. The motivation behind these results is to illustrate the differences be-
tween prograde and retrograde flow for moderately large Reynolds numbers

and β̂ = 1, 10. Of course with β̂ = 0 retrograde and prograde flows will be
mirror images of each other about the y-axis.

Figure 10 shows streamline plots of retrograde flow past a circular cylinder

for the case Re = 200 and β̂ = 1 at selected times. The most striking differ-
ence between prograde and retrograde flow is in the structure of the separa-
tion region. An elongated separation bubble is seen to result from retrograde
flow, contrary to the shortened separation bubble observed with prograde



15

t=2

x

y

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

(a)

t=3

x

y

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

(b)

t=5

x

y

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

(c)

Fig. 9 Streamlines of perturbed prograde flow past a circular cylinder for the

parameters Re = 1000, β̂ = 1.

flow. The stretched separation region weakens the recirculating flow taking
place inside of it. [10] predicted analytically that the β-effect should have no
influence on structure of the boundary-layer in retrograde flow. Comparing
the points of separation in Figures 2 and 10, this analytical result appears
to be consistent with our numerical findings. In addition, the experiments of
[3] suggest that separation is enhanced in westward flows. Our results agree
with these observations since the flow separation regions are clearly larger

when β̂ > 0 than when β̂ = 0. Another key difference between prograde and
retrograde flow is in the behavior of Rossby waves which are barely noticeable
in Figure 10; they are only evident near the x-axis upstream of the cylinder
where the oncoming flow is retarded. Even though the linear wave theory
predicts that in retrograde flow the Rossby wave crests must always travel
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to the west, the zonal group speed may be in either direction depending on

β̂ and on the wavenumber. This explains why it possible to observe Rossby
waves on the upstream side of our obstacle in retrograde flows: The flow
“feels” the upstream influence of the cylindrical obstacle.

t=2

x

y

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

(a)

t=8

x

y

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

(b)

t=14

x

y

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

(c)

Fig. 10 Streamlines of retrograde flow past a circular cylinder for the parameters

Re = 200, β̂ = 1.

Figure 11 illustrates retrograde flow for Re = 1000 again with β̂ = 1.
Increasing the Reynolds number appears to have the same effect as in the
prograde case, namely that the recirculation vortices are strengthened and
the Rossby waves are less dampened by viscosity making them slightly more

evident in the flow field. When β̂ is increased to β̂ = 10 and the Reynolds
number is fixed at Re = 1000 the flow field is is not dramatically different
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as when β̂ = 1. As shown in Figure 12, the main difference is that strong
flow intensification is initiated near the points of separation and continues
downstream as a pair of separated zonal jets. Above and below these jets,
travelling Rossby waves are clearly evident. Contrary to the prograde flow
case with the same set of physical parameters (Figure 6), these inertial jets
remain separated because the separation region is elongated by the β-effect,
and not constricted to a tiny recirculation bubble. Another key difference
is that there appears to be no Rossby wave breaking here, even though the
β-effect is quite strong. Rossby waves are largely unevident in the flow field
until t = 8, but they do become more apparent by t = 14. As observed in
the case of prograde flow, retrograde flow also remains symmetrical about
the x-axis. To break the symmetry we introduce a small disturbance into the
flow field at t = 1 as previously explained. Figure 13 shows the perturbed

flow for the case with Re = 1000 and β̂ = 1. Contrasting this with the
corresponding unperturbed case portrayed in Figure 11, we see that the only
difference appears to be in the wake at t = 14. In fact, at t = 8 there appears
to be very little asymmetry.

5.3 Prograde Flow Past an Elliptic Cylinder

We now consider flow past elliptic cylinders on the β-plane. To prescribe this
flow we need to specify the inclination, η, and the aspect ratio of the ellipse,

r, in addition to Re and β̂. In an attempt to reduce the parameter space to
a manageable dimension, we consider a slender ellipse having r = 0.2, and
vary the inclination. When η 6= 0, 90◦ the flow is inherently asymmetric and

obtaining numerical solutions was more difficult for larger β̂ values. For this

reason we focused on β̂ ≤ 1.

We begin with the symmetric case having η = 90◦, Re = 1000 and β̂ = 1

displayed in Figure 14. We have chosen to not show the non-rotating (β̂ = 0)
case with η = 90◦, since the results are analogous to the results when the

obstacle was circular. However, the case of β̂ = 1 is interesting because
it illustrates how the β-effect behaves when the obstacle is more slender.
The primary difference between the results here and those with a circular
obstacle can be attributed to the rapid change in curvature near the tips

of the cylinder. With β̂ = 1 the suppressing nature of the β-effect is even
stronger than that witnessed in Figure 5 for the circular cylinder. A stagnant
region is also seen to form and grow in front of the cylinder. Rossby waves
are clearly visible downstream of the cylinder.

We next turn to the asymmetric case of prograde flow past an elliptic
cylinder inclined at an angle of 15◦ (η = −15◦) relative to the free stream

with Re = 1000 and β̂ = 0, 0.75 illustrated in Figures 15, 16, respectively.

With β̂ = 0, Figure 15 represents a classical depiction of vortex shedding
whereby vortices regularly form behind the cylinder and then shed and get
carried downstream. As they propagate downstream they weaken due to vis-

cosity. The situation is quite different when β̂ 6= 0 as shown in Figure 16.
First we note that Rossby waves are not discernible in this plot since their
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Fig. 11 Streamlines of retrograde flow past a circular cylinder for the parameters

Re = 1000, β̂ = 1.

wavelengths are comparable to the dimension of the domain. As previously
reported for the case of the circular cylinder, the β-effect suppresses vortex
shedding to a small separation region near the cylinder’s trailing edge. The
shed vortices appear to be swept around the trailing edge in a clockwise di-
rection, rather than in the expected downstream direction. Although it is
not evident from Figure 16, our simulations indicate that as these vortices
propagate southward they expand and gain strength in accordance with con-
servation of potential vorticity. Also, the northern edge of the separation
region and the cylinder are flanked by a region of tightly packed streamlines
indicating a western boundary current has formed, but the flow is relatively
stagnant south of the cylinder. This flow behavior is similar to that observed

for perturbed prograde flow past a circular cylinder. The case when β̂ = 0.25
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Fig. 12 Streamlines of retrograde flow past a circular cylinder for the parameters

Re = 1000, β̂ = 10.

(not shown) was also considered. When increasing β̂ from 0.25 to 0.75, the
only discernible qualitative difference between the two cases was that vortex
shedding occured sooner in the latter case.

5.4 Retrograde Flow Past an Elliptic Cylinder

To conclude our series of numerical experiments, we consider the case of
retrograde flow past an elliptic cylinder for inclinations of η = 90◦ and η =
15◦ (which corresponds to η = −15◦ for the prograde case).

In Figure 17, η = 90◦, Re = 1000 and β̂ = 1. No traveling Rossby waves
are visible in the flow field. It is clear that the β-effect influences boundary-
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Fig. 13 Streamlines of perturbed retrograde flow past a circular cylinder for the

parameters Re = 1000, β̂ = 1.

layer separation. The two initial recirculation vortices that form propagate
downstream and are followed by a series of smaller-scale recirculation vor-
tices. The separation region also grows to be much longer than in the non-
rotating case. These results are indeed reminiscent of retrograde flow past a

circular cylinder when Re = 1000 and β̂ = 1, with the exception that Rossby
waves appear to be absent in the flow field.

Finally, in the case where η = 15◦, Re = 1000 and β̂ = 1 (not shown), the
results appeared much the same as in the non-rotating case (i.e. a reflected
image of figure 15). Rossby waves were not visible in the flow field, and apart
from timing the vortex shedding process appeared to continue as usual.
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Fig. 14 Streamlines of prograde flow past an elliptic cylinder for the parameters

r = 0.2, η = 90◦, Re = 1000, β̂ = 1.

6 Concluding Remarks

This paper revisited the problem of barotropic flow on the β-plane past
cylindrical obstacles having circular and elliptic cross sections. The two non-
dimensional parameters of interest are the Reynolds number, Re and the non-

dimensional beta-parameter β̂. To solve the problem on a large or unbounded
domain with uniform far-field conditions, a modified β-plane approximation
was proposed. An efficient numerical solution procedure for computing the
flow field for small to moderately large Reynolds numbers was also presented.
The focus of this investigation was on the early to moderate stages of the
flow development following an impulsive startup. With this restriction on the
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Fig. 15 Streamlines of prograde flow past an elliptic cylinder for the parameters

r = 0.2, η = −15◦, Re = 1000, β̂ = 0.

time interval, it is reasonable to assume that the flow will remain laminar
and two-dimensional.

For prograde flow with β̂ ≤ 1, our results concerning Rossby wave activity
appeared to agree with those reported by [13], [18], and [8] despite the fact
that their results assumed an inviscid (Re→ ∞) fluid.

While the results presented here for the case of viscous prograde flow
past a circular cylinder are qualitatively similar to those reported by [16] for

β̂ ≤ 1, there is one subtle difference. In our simulations the flow remains
symmetric unless it is perturbed while those in [16] are asymmetric.

When β̂ was increased to β̂ = 10, our results indicated that a pair of
strong western boundary currents formed at the shoulders of the cylinder
which extended eastward along the cylinder’s tiny separation region where
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Fig. 16 Streamlines of prograde flow past an elliptic cylinder for the parameters

r = 0.2, η = −15◦, Re = 1000, β̂ = 0.75.

they joined to form a single eastward zonal jet maintained by Rossby wave
breaking on either side of the jet. [16] reported that these western boundary
currents remained separated and extended downstream as a pair of zonal
jets being maintained by breaking Rossby waves in the cylinder’s turbulent
separation wake.

Retrograde flow past a circular cylinder was found to possess some dif-
ferent features from prograde flow. These features appeared to agree with
the experimental observations made by [3]. The main difference lies in the
separated region which in retrograde flow becomes elongated. Additionally,
standing Rossby waves cannot be generated as is explained by the dispersion
relation for linear Rossby waves in a westward background flow.
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Fig. 17 Streamlines of retrograde flow past an elliptic cylinder for the parameters

r = 0.2, η = 90◦, Re = 1000, β̂ = 1.

The β-effect posed similar constraints for the case of symmetric prograde
flow past a slender elliptic cylinder. The case of retrograde flow, on the other
hand, behaved in a similar fashion as perturbed flow past a circular cylinder

for the same Re and β̂. For asymmetric prograde flow past a slender ellip-
tic cylinder vortex shedding shedding was suppressed for small to moderate
times. Vortices were found to propagate around the trailing edge instead of
in the expected downstream direction, as observed in the non-rotating case.
For retrograde flow past an inclined elliptic cylinder, the β-effect appeared
to have little or no influence on the structure of the flow.
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der hydrodynamik. Ark Math. Astrom. Fys. 6(29) (1910)

12. O’Sullivan, D., Hitchman, M.: Inertial instability and Rossby wave breaking in
a numerical model. J. Atmos. Sci. 49, 991–1002 (1992)

13. Page, M., Johnson, E.: Flow past cylindrical obstacles on a beta-plane. J. Fluid
Mech. 221, 349–382 (1990)

14. Rhines, P.: Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417–433
(1975)

15. Steinmoeller, D., Flow separation on the β-plane, M.Math thesis, University of
Waterloo, Waterloo, Ontario (2009)

16. Tansley, C., Marshall, D.: Flow past a cylinder on a β-plane, with applica-
tion to Gulf Stream separation and the Antarctic Circumpolar Current. J. Phys.
Oceanogr. 31, 3274–3283 (2001)
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