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Overview of the talk

Introduction to the problem.

A suitable mathematical model for internal wave dynamics in lakes.

Past Work:

Numerical solutions with pseudospectral methods for simple
geometries.

Current/Future Work:

Numerical solutions with Discontinuous Galerkin (DG-FEM) methods
for complex geometries.

D. Steinmoeller, UW Modelling Internal Wave Dynamics Using Unstructured Grids 2/36



Internal Wave Modelling in Lakes: What equations to Solve?

In general we have a 3D, rotating, stratified (free-surface) flow with an
irregularly shaped boundary.

Solutions to the full 3D equations are becoming more within reach
as parallel computing becomes more powerful and accessible.

Free surface flows in the full equations are very difficult: Moving
boundary. Most 3D models that exist today (e.g. MITgcm) linearize
the free surface or “cheat” in some other way.

Past models have taken 2D slices, rigid lid or assumed hydrostatic
flow.

Shallow water models (SWMs) can address the free surface, and can
crudely handle stratification, so perhaps they are the most realistic
choice at present.
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Non-Hydrostatic Shallow Water Model

The traditional SWM assumes (H/λ)� 1, and thus is only an
appropriate model of sufficiently long waves.

To address dispersive short-wave phenomena, we consider the
dispersion-modified SWM of Brandt et. al. (1997)

∂h

∂t
+∇ · (hu) = 0 , (1)

∂(uh)

∂t
+∇ · ((uh)u) = −gh

∂η

∂x
+ fvh +

H2

6

∂

∂x

(
∇ · ∂(uh)

∂t

)
, (2)

∂(vh)

∂t
+∇ · ((vh)u) = −gh

∂η

∂y
− fuh +

H2

6

∂

∂y

(
∇ · ∂(uh)

∂t

)
. (3)

Q: Where do these mysterious new terms come from?
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A: “Boussinesq” equations

There is an overwhelming number of models in the literature
referred as the Boussinesq equations.

All derivations rely on the principle of (approximately) retaining the
dispersion that ensues from the vertical momentum equation, while
at the same time removing any dependence on z (vertical structure).

Original idea can be traced back to Boussinesq’s (1872) response to
J.S. Russel’s observation of solitary waves.

Joseph Boussinesq
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Boussinesq’s Idea

Consider a fluid lying over a flat bottom at z = −H in the (x,z)-plane. If
we assume an irrotational flow then (u,w) = (ϕx , ϕz) for some potential
ϕ. If we expand in a Taylor series about z = −H, we obtain

ϕ = ϕ(x ,−H) + (z + H)

[
∂ϕ

∂z

]
z=−H

+
1

2
(z + H)2

[
∂2ϕ

∂z2

]
z=−H

+ · · · .

Incompressible (∇ · u = 0) ⇒ ϕzz = −ϕxx . Substituting and assuming an
impermeable bottom (ϕz = 0 at z = −H) yields

ϕ = ϕ(x ,−H)− 1

2
(z + H)2

[
∂2ϕ

∂x2

]
z=−H

+
1

24
(z + H)4

[
∂4ϕ

∂x4

]
z=−H

+ · · · .

The Boussinesq equations are derived by truncating this series,
substituting it into the Navier-Stokes equations, and depth-integrating as
with the traditional SWM.
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Numerical Concerns: How to Time-Step the Model Equations

Our PDEs contain mixed time/space derivatives. How should we
discretize in time to allow for a stable and efficient scheme?

Assume we have discretized in space so that ∂x → Dx (method of
lines), and what remains is to numerically solve the resulting system
of ODEs.

The most obvious approach is to apply the same time-stepping
formula to all instances of ∂t .

This results in a 2× 2 block system for ((uh)n+1, (vh)n+1) that can
be quite expensive to invert (“coupled approach” Eskilsson &
Sherwin (2005)):(

I − H2

6 Dxx −H2

6 Dxy

−H2

6 Dxy I − H2

6 Dyy

)(
(uh)n+1

(vh)n+1

)
=

(
RHS (n,n−1,...)

RHS (n,n−1,...)

)
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Auxiliary Variable Approach

Eskilsson & Sherwin (2005) noted that the following approach results in
a linear system half the size of that in the coupled approach.

Let z = ∇ · (uh)t .

Momentum equations become: (uh)t = a + H2

6 ∇z .

Take ∇·, get an elliptic problem: ∇ ·
(

H2

6 ∇z
)
− z = −∇ · a.

Momentum equations are now effectively decoupled.

Now have to invert a Helmholtz problem with spatially-dependent
diffusivity at each time-step.

Reminiscent of how one solves for pressure in the full N-S equations.
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Previous Work: Pseudospectral Modelling

Psedospectral methods provide a good benchmark for simple geometries
due to their excellent resolution characteristics and small amounts of
inherent dissipation. The basics:

Periodic boundary conditions ⇒ Fourier basis. Differentiate in
spectral space (FFT). Perform any products in physical space.

Impermeable boundary ⇒ Chebyshev basis. Again, differentiate in
spectral space (DCT implemented with FFT).

Remove energy pile-up from small scales with low-pass wavenumber
filter in spectral space.

Solve Helmholtz problem iteratively (GMRES preconditioned with
LU/LU-inc).

2D pseudospectral codes thus far:

Doubly periodic (1-layer or 2-layer & bottom topography), MATLAB
Periodic channel (1-layer & bottom topography), MATLAB
Circular geometry (1-layer & bottom topography), MATLAB
Doubly periodic (1-layer & flat bottom), C++ with MPI
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Results: Internal Wave Generation with the 2-layer Model
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Results: Internal Wave Generation with the 2-layer Model
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Results: Internal Wave Generation with the 2-layer Model
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Results: Nonlinear Kelvin Wave on Donut Lake
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Onto more complicated geometries: Why DG-FEM?

DG-FEM was originally intended as a high-order extension of FVM
for complex geometries.

FVM methods are typically constrained to low orders of accuracy,
since making the reconstruction problem high-order destroys
geometric flexibility.

DG-FEM attains high-order accuracy in complex geometries by
adding more degrees of freedom (DoFs) to a cell.

This allows DG-FEM to mimick FEM formulations whilst removing
the need for global operators by addressing inter-cell coupling with
an appropriate numerical flux (same idea as FVM).
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Why DG-FEM? (cont’d)

complex high-order expl. semi- conserv. elliptic
geometries accuracy discrete form laws problems

FDM X X X X X
FVM X X X X (X)
FEM X X X (X) X
PSM X X X (X) X

DG-FEM X X X X (X)
Table annotated from Hesthaven & Warburton (2008).

Main Drawback: To ensure the locality of the scheme, interfacial
element nodes must be duplicated. ⇒ More memory/processor
intensive.
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Case Study: Testing DG on a Nonlinear Dispersive Problem

Consider the nonlinear KdV equation in standard form on a periodic
domain

ut + 6uux + uxxx = 0 , (4)

Exact 2-soliton solution (cf. Johnson (2001))

u(x , t) = 12
3 + 4 cosh(2x − 8t) + cosh(4x − 64t)

(3cosh(x − 28t) + cosh(3x − 64t))2
. (5)

The main difficulty: ∆t ∝ ∆x3.

Q: How do:

increasing the number of elements (h-refinement)

increasing the order of basis function (p-refinement)

improve the accuracy of the numerical solution?
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Nonlinear KdV Equation: DG Formulation

Re-write as a first-order system of conservation laws

ut + (f (u) + q)x = 0 , (6)

q = px , (7)

p = ux , (8)

where f (u) = 6u2/2. Form local solution with a nodal approach.
x ∈ Dk = [xk

l , x
k
r ]:

uk
h =

Np∑
i=1

uk
h (xk

i , t)`ki (x), pk
h =

Np∑
i=1

pk
h (xk

i , t)`ki (x), qk
h =

Np∑
i=1

qk
h (xk

i , t)`ki (x).

The strong form is obtained by multiplying equations (6)–(8) by a
member of the space of local test functions (9) and integrating by parts
twice.

V k
h = {`kj }

Np

j=1 . (9)
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Nonlinear KdV Equation: Strong Form DG Formulation

We obtain the 3Np Galerkin equations on each element k

Mk dukh
dt

+ Sk
(
fkh + qkh

)
=

[
`k(x)(f k

h − f ∗)
]xk

r

xk
l

+
[
`k(x)(qk

h − q∗)
]xk

r

xk
l

,

Mkqkh − Skpkh = −
[
`k(x)(pk

h − p∗)
]xk

r

xk
l

,

Mkpkh − Skukh = −
[
`k(x)(uk

h − u∗)
]xk

r

xk
l

,

where vkh = [vk
1 , · · · , vk

Np
]T,

and Mk
ij =

∫
Dk `

k
i (x)`kj (x)dx , Skij =

∫
Dk `

k
i (x)

d`kj
dx dx are the Np × Np local

mass and stiffness matrices.
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Appropriate Numerical Fluxes (f ∗, p∗, q∗, u∗)

The DG method shows its flexibility by allowing for choice of
numerical flux.

Often, simple averaging of interface node values (a central flux)
works well.

The best choices “mimic the flow of information in the underlying
PDE.” For the KdV equation, we choose

f ∗ = {{fh}}+max
uh

df

du

n̂

2
· JuK , (Lax-Friedrichs) (10)

u∗ = {{uh}}+n̂ · JuhK , (LDG-Upwinding) (11)

q∗ = {{qh}} −n̂ · JqhK , (LDG-Upwinding) (12)

p∗ = {{ph}} , (Central) (13)

where {{v}} =(v+ + v−)/2, JvK = n̂− · v− + n̂+ · v+.

Element-wise energy considerations reveal a stable scheme.
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KdV Solver Animation (N=1, K=200)
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KdV Solver Animation (N=3, K=100)
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Results

The following table outlines the effects of h and p-refinement for the
nonlinear KdV equation integrated from ti = −0.5 to tf = 0.5 with a
5-stage 4th-order low-storage RK method.

N K DoF ‖u(tf )− uh(tf )‖2 Run-time (s)
1 100 200 22.1 65.8
1 200 400 8.31 580
3 100 400 0.0364 3165

Q: If same number of DoF’s, why is Run #3 over 5x more costly than
Run #2?
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A: Element-Wise Operations Done With a Legendre Basis

Need a way to calculate Mk and Sk for arbitrary N. The optimal choice
of basis is the orthonormal Legendre Polynomials P̃n. Consider the
standard interval r ∈ [−1, 1]

u(r) ≈ uh(r) =

Np∑
n=1

ûnP̃n−1(r) =

Np∑
i=1

u(ri )`i (r) . (14)

The connection between the nodes u and the modes û is then established
by the generalized Vandermonde matrix Vij = P̃j(ri )

u = Vû . (15)
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Element-Wise Operations Done With a Legendre Basis (cont’d)

In order to ensure that V is well-conditioned (and the interpolating
polynomials are well-behaved), we take the ri ’s to be the famous
Legendre-Gauss-Lobotto (Chebyshev) quadrature points.

ri = cos

(
2i − 1

2Np
π

)
, i = 1, . . . ,Np (16)

The price: Introduces much smaller ∆r ’s than on a uniform grid.

D. Steinmoeller, UW Modelling Internal Wave Dynamics Using Unstructured Grids 24/36



Element-Wise Operations Done With a Legendre Basis (cont’d)

If we define the differentiation matrix Dr ,(i,j) =
d`j
dr ri and work out the

inner-products, we obtain (Hesthaven & Warburton (2008))

Mk =
hk

2
M =

hk

2

(
VVT

)−1
, (17)

Sk = S =MDr , (18)

thus eliminating the need to explicitly calculate inner products
numerically.
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DG-FEM and the Boussinesq equations

Single-layer Boussinesq-type equations have already been accurately
solved using DG-FEM by Sherwin and Eskilsson (2005) and
Ensig-Karup, et. al. (2006).

My work thus far: 1D single-layer Boussinesq model in MATLAB.

Short-term goal: 2D single-layer Boussinesq model in MATLAB in
complex geometries.

Long-term goal: 2D 2-layer Boussinesq model in C/C++.
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DG Formulation of the 1D Boussinesq equations

Write mass/momentum equations as a system of conservation laws

∂h

∂t
+

∂

∂x
(uh) = 0 , (19)

∂(uh)

∂t
+

∂

∂x
f (h, u) =

H2

6

∂z

∂x
+ g

∂H

∂x
h , (20)

where f (h, u) =
(
hu2 + 1

2gh2
)
.

For the Non-Hydrostatic pressure equation, let b(x) = H2/6 and
q =
√

bzx . The elliptic problem can be written as

∂

∂x
(
√

bq)− z = −∂a

∂x
, (21)

q =
√

b
∂z

∂x
. (22)
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Strong DG Formulation

Hyperbolic equations:

Mk ∂h
k

∂t
+ S(uh)k =

[
`(x)((uh)k − (uh)∗)

]xk
r

xk
l

,

Mk ∂uh
k

∂t
+ Sfk = BkSzk + gHk

xMkhk +
[
`(x)(f k − f ∗)

]xk
r

xk
l

− Bk
[
`(x)(zk − z∗)

]xk
r

xk
l

,

where Bkii = b(xk
i ), Hk

x,ii = ∂H
∂x (xk

i ).

Elliptic equation:

S
√
B
k
qk −Mkzk =

[
`(x)(

√
bqk − (

√
bq)∗)

]xk
r

xk
l

− Sa +
[
`(x)(ak − a∗)

]xk
r

xk
l

,

Mkqk =
√
B
k
Szk −

[
`(x)(

√
bzk − (

√
bz)∗)

]xk
r

xk
l

,
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Numerical Fluxes

Hyperbolic equations:

Advective terms (f ∗, (uh)∗)⇒ Lax-Friedrichs flux (in both
momentum and mass equations)
z∗ = {{z}}.

Elliptic equation:

a∗ = {{a}}, (
√
bz)∗ = {{

√
bz}} (Central fluxes)

(
√
bq)∗ = {{

√
bq}} −τJzK, τ > 0. (Penalized Central flux)

The “penalty term” is used to disallow large jumps in z at interfaces. If
τ = 0, the matrix representation of the Helmholtz operator possesses a
singular eigenmode (λ = 0), and the problem is not invertible.
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Elliptic Problems and Numerical Flux Choice

There are various trade-offs to consider when choosing numerical
flux functions for elliptic equations.

The spatial-discretization of the elliptic operator can be represented
as an NpK × NpK matrix A.

Different numerical fluxes result in different stencil-sizes and
conditioning properties.

u∗ q∗ Sparsity Conditioning
Central {{u}} {{q}} −τJuK Worst Best

LDG {{u}}+n̂ · JuK {{q}} −n̂ · JqK− τJuK Best ≈ 2κ(Ac)
IP {{u}} {{ux}} −τJuK Medium ≈ κ(Ac)
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Results: Dispersive Shortwaves, N = 3, K = 630, DoF = 2520

Time-stepped with 3rd order SSP RK method with adaptive ∆t to
t = 200. Total Run-Time = 14.8s.
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Dispersive Shortwaves, N = 20, K = 120, DoF = 2520

Total Run-Time = 114s.
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Extension to Two Dimensions: If I did it

Image courtesy of Tim Warburton.

Stay with the nodal approach. H & W (2008) have found a near
optimal choice of 2D polynomial interpolation nodes on the triangle.
1D numerical experiments reveal that it is best to aim for high-order
polynomials than for a large number of elements.
Will this remain possible given the complex geometry of a lake?
Use triangles, or do we need curvilinear elements?
Less diffusive advective numerical fluxes than Lax-Friedrichs: HLL,
HLLE, Roe?
Choice of numerical flux for elliptic problems becomes important.
Direct Solve (LU/Chol.) vs. Iterative Solve (GMRES/CG)?
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Open Questions/Issues

How to address lateral boundary-layer separation.

No-slip layer not resolved ⇒ Use quadratic bottom drag law?

Time-dependent BC’s ⇒ time-dependent operator.

Need linear harmonic lifting operator or change of variables
work-around.

Language? C or C++.

Nunn and Warburton have some 2D CFD (Euler, N-S) C++ code
freely available under the GPL (project NUDG++).

Parallel implementation:

Parallelize at what level?
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Questions?

Opeongo Lake Triangular Mesh courtesy of Aidan Chatwin-Davies

Thank You!
D. Steinmoeller, UW Modelling Internal Wave Dynamics Using Unstructured Grids 35/36



Cited Literature

1. J. Hesthaven & T. Warburton: “Nodal Discontinuous Galerkin
Methods”, Springer, 2008.

2. R. Johnson: “Modern Introduction to Mathematical Theory of
Water Waves”, Cambridge University Press, 2001.

3. P. Brandt, A. Rubino, W. Alpers, J. Backhaus: “Internal waves in
the Strait of Messina Studied by a Numerical Model and SAR Images
from ERS 1/2 Satellites,” J. Phys. Oceanogr., 27, 648–663, 1997.
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