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Introduction
Simulating the motion of lakes is a complicated problem due to 
the wide variety of laminar and turbulent flow features of length 
scales ranging from 1 km to 1 mm. The difficulty is further 
compounded by the irregular geometry of typical lake coastlines. 

In order to deal with general geometries, we investigate the use 
of the high-order nodal Discontinuous Galerkin Finite Element 
Method (DG-FEM)  to solve a weakly non-hydrostatic layered 
model [1] that includes dispersive terms to prevent unphysical 
shocks from forming and to model high-frequency wave 
phenomena. For a single-layer fluid, the equations are:

Here, h(x,y,t) = H(x,y) + η(x,y,t)  represents the total layer 
thickness where H(x,y) is the mean depth. The parameters g and 
f are the acceleration due to gravity and the Coriolis parameter. 
The terms on the right-hand side (from left to right) represent 
variations in depth, Coriolis accelerations, and weakly non-
hydrostatic corrections to the hydrostatic pressure gradient. 

In the nodal DG-FEM method, the local solution to the weak-
integral form of the equations are considered on a particular 
element with (Lagrange) interpolatory test functions. Inter-
element coupling is handled using suitable numerical flux 
functions in the surface integral contributions. For computational 
purposes, the integral formulations are reduced to local (mass & 
stiffness matrix) operators. See [2] for details.

Motivation
Even a very smooth boundary may appear to have sharp 
corners when approximated in a piece-wise linear manner, as is 
the case with most traditional finite element approximations. This 
fact represents a source of two key difficulties:

1. It is well known that the convergence rate of high-order 
methods is a function of the smoothness of boundaries. As a 
result, it is often argued that in the presence of non-smooth 
boundaries, a first-order approximation is the best one can do.

2. Inviscid flow around a wall corner contains a singularity at the 
corner whenever the wall angle is >180º, as can be 
demonstrated using potential flow theory [3]. 

In light of these issues, it is clear that a high-order method begs 
for a smooth and highly accurate representation of coastlines.

Spurious Eddies in Inviscid Simulations
It has been found that in numerical simulations, the aforementioned singularity at corners may be 
tamed using limiting or local spectral filtering. However, these techniques  have the rather undesired 
effect of producing spurious eddies by diffusing the singularity outward from the boundary.  

Since the equations do not contain viscous terms, viscous boundary layers are not modelled. Thus, 
these eddies are unphysical, and it can be shown that their shape and size are dependent on the 
grid scale and filtering/limiting parameters.

Unphysical!Unphysical!

The Fix – Curvilinear Elements
We have extended the procedure presented in 
[2] for circular geometries to deal with arbitrary 
curvilinear geometries as follows:

1. Given unstructured boundary data, construct 
an arc length parameterized cubic spline 
interpolant that may be used to smoothly 
represent/reconstruct the coastlines.

2. Generate a straight-sided triangular mesh 
using the original (or sub-sampled) unstructured 
boundary data and your favorite mesh generator.

Deform
&

Blend

3. Flag all boundary element edges that need to 
be curved. In each flagged element, evaluate the 
parametric spline to redistribute the edge nodes 
by arc length along the curvilinear boundary.

4. Calculate the deformation in moving the 
boundary nodes from the straight-sided edge to 
the curvilinear edge. The deformation can then 
be blended to interior nodes using Gordon-Hall 
blending [2]. The Jacobian of the mapping to 
the standard triangle can then be computed 
numerically. 

Hence, the local mass and stiffness matrices can be recovered on all curvilinear elements. These 
local operators can then be stored (and factorized, if necessary) for re-use at each time-step.

In order to reduce the effects of aliasing errors induced by the non-constant Jacobians, quadrature & 
cubature integration rules of higher order than the interpolating polynomials are employed, as in [2].

Results and Discussion
Preliminary results on simplified geometries reveal that the 
curvilinear element methodology suppresses spurious eddies at 
the smoothed corners, as shown below using an 8 th order 
simulation of an evolving density interface tilt in a rotating basin.

Another benefit of using the over-integration techniques comes 
from the observation that less filtering is required to stabilize the 
scheme due to a reduction of aliasing errors. Hence, solutions 
are obtained with limited amounts of numerical dissipation.

It was found that the switch to the curvilinear element 
methodology resulted in an increase in computational time by a 
factor of ~1.4 over the straight-sided element methodology. 
Thus, the overall outlook for applying the curvilinear element 
approach in practical applications is quite promising.

1) Straight-sided elements

2) Curvilinear elements

References
[1] A. de la Fuente, K. Shimizu, J. Imberger, and Y. Nino. The evolution of internal waves in a rotating, 
stratified, circular basin and the influence of weakly nonlinear and nonhydrostatic accelerations. 
Limnol. Oceanogr., 53(6):2738–2748, 2008.
[2] J. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods. Springer, 2008.
[3] P. Kundu and I. Cohen. Fluid Mechanics, 4th edition. Elsevier Academic Press, 2008.

 


	Slide 1

