
On Fractional-Step Schemes for Incompressible
Inviscid Flow

Derek T. Steinmoeller
∗

I. Introduction

The divergence-free constraint in incompressible flow

∇ · u = 0 , (1)

has weak form ∫
Ω

qh∇ · u dΩ = 0 . (2)

where qh lies in the space of test functions. In the standard
finite element method, the test functions lie in the same space
as the basis functions of the unknown flow variable. Due
to the well-known LBB stability constraint that says that the
velocity and pressure variables do not, in general, lie within
the same space, it is often argued that mixed-order spatial
discretizations for the velocity and pressure fields (or stable
element pairs) are required to recover a numerically stable
scheme. For the sake of simplicity, it is desirable to have a
stable equal-order numerical scheme. Is this possible?

II. Methods

To derive a stable equal-order method, we will apply the
Pressure-Stabilized Petrov-Galerkin method [1] that replaces
the weak form (2) with the stabilized (or penalized form)∫

Ω

qh∇ · u dΩ +
Ne

∑
e=1

∫
Ωe

τ∇qh · R = 0 . (3)

Here,

R =
∂u
∂t

+ (u · ∇)u +∇p , (4)

is the residual of the momentum equation, and Ne is the
number of elements used in the spatial discretization. If we
assume that τ ≥ 0 is constant throughout the domain, then
the summation can be replaced by a single integral and we
can integrate by parts:

∫
Ω

qh∇ · udΩ + τ

∫
∂Ω

qhR · n̂−
∫
Ω

qh∇ · r

 = 0 . (5)

Assuming a closed or periodic boundary, our boundary in-
tegral vanishes. If we then apply the standard Galerkin ap-
proach where the flow variables are expanded in terms of

basis functions and the test function qh lies in the space of
basis functions, we find the discrete formulation

MijDiju− τMijDijR = 0 . (6)

Here Dij is the discrete divergence operator, Mij is the global
mass matrix that is invertible by construction.

Left-multiplying this expression by the inverse mass ma-
trix M−1

ij and returning to continuous formulation, at any
particular discrete time value (say tn+1 = (n + 1)∆t) we have

∇ · un+1 − τ∇ ·
(

∂u
∂t

n+1
+ [(u · ∇)u]n+1 +∇pn+1

)
= 0 ,

(7)
a penalized form of the divergence-free constraint

∇ · un+1 = 0 . (8)

III. Time-Stepping Strategy

We notice that equation (7) when combined with the momen-
tum equation

∂u
∂t

n+1
+ [(u · ∇)u]n+1 = −∇pn+1 (9)

is strongly coupled in time and one might be tempted to use
a strongly-implicit time-stepper to solve for the flow variables
at time-level tn+1. However, it should be noticed that if we
"lag" the stabilization term to tn+ 1

2
= (n + 1

2 )∆t and apply
the second-order accurate approximation

∂u
∂t

=
un+1 − un

∆t
+ O(∆t2) , (10)

we find

∇·un+1− τ∇·
(

un+1 − un

∆t
+ [(u · ∇)u]n+

1
2 +∇pn+ 1

2

)
= 0 .

(11)
Now, if we make the choice of τ = ∆t we have

∇ ·
(

un − ∆t [(u · ∇)u]n+
1
2 − ∆t∇pn+ 1

2

)
= 0 . (12)

For later convenience, we define

u∗ = un − ∆t [(u · ∇)u]n+
1
2 − ∆t∇pn+ 1

2 . (13)
∗Thanks to: Marek Stastna, Kevin Lamb, Sumedh Joshi

1



Inspecting the definition (13) and the pressure-stabilized state-
ment of conservation of mass

∇ · u∗ = 0 , (14)

that is equivalent to (12), the requirements of our time-
stepping scheme become clear. We require:

1. An approximation of u∗ via extrapolation from previous
time-levels.

2. An accurate computation of un+1 = P(u∗): the enforce-
ment of incompressibility via the projection of u∗ onto
the null space of the divergence operator.

The code for an Octave implementation of a fractional-
step time-splitting scheme is given in Code Listing 1. This
technique is based on the approach discussed by Bell and
Marcus [2]. Since the calculation of the advective/source-
term right-hand side of the equations and the advancement
of pressure is dependent on the spatial-discretization used,
they are abstracted away into separate function calls labelled
EulerRHS2D and pressproj_hnd. Their implementation de-
tails are left out as an exercise for the reader. Similarly, Filt
represents a filtering matrix with a construction that depends
upon the spatial-discretization method being used.

%% Octave code l i s t i n g f o r 2nd−order f r a c t i o n step Incompress ible Euler equat ions .
%% Here , Qn = ( rho , u ,w)^n r e p r e s e n t s the vec tor of flow v a r i a b l e s a t time−l e v e l tn=n∗dt .
%% where dt i s the time−step , and n denotes the time−l e v e l .

while ( time ( n ) < FINAL_TIME)

% Get advect ive RHS, given the current time , and the boundary condi t ion
% and the a c c e l e r a t i o n due to g r a v i t y g =9.81 m/s ^2.
rhsQn = EulerRHS2D (Qn, time , BC, g ) ;

% Advective step ( p r e d i c t o r s tep ) .
Qnp1_estimate = Qn + dt∗rhsQn − dt∗gradp_nmh ;

% S p a t i a l l y f i l t e r v e l o c i t y :
f o r n=2:3

Qnp1_estimate ( : , : , n ) = F i l t ∗Qnp1_estimate ( : , : , n ) ;
end

% Corrector stage , t h i s can be repeated more than once i f des ired .
f o r j j =1 :NUM_CORRECTIONS

Qnph = 0 . 5 ∗ ( Qnp1_estimate + Qn ) ;

% Get es t imate f o r convect ive/source terms at h a l f s tep .
rhsQnph = EulerRHS2D (Qnph, time , BC, g ) ;

% Ex t r a po l a te to get c o r r e c t e d es t imate f o r grad p at n+1/2 step .
gradp_nph = rhsQnph − rhsQn + gradp_nmh ;

% Advective step ( c o r r e c t o r ) .
Qnp1_estimate = Qn + dt∗rhsQnph − dt∗gradp_nph ;

end

% F i l t e r updated v e l o c i t y :
f o r n=2:3

Qnp1_estimate ( : , : , n ) = F i l t ∗Qnp1_estimate ( : , : , n ) ;
end

us tar = Qnp1_estimate ( : , : , 2 ) ;
wstar = Qnp1_estimate ( : , : , 3 ) ;

2



% Do pressure p r o j e c t i o n .
RHS = [ us t ar ( : ) ; wstar ( : ) ] ;

% Pressure p r o j e c t i o n i s c a r r i e d out given the predic ted v e l o c i t y , the time−step , and
% the LU−f a c t o r s of the Laplacian with Neumann boundary condi t ions on walls .
% Here , P & Q are pivot and column−reorder ing matr ices such t h a t P∗A∗Q = L∗U.

r e s u l t = pressproj_hnd (RHS, dt , L ,U, P ,Q) ;

% Retr ieve v e l o c i t y from stacked r e s u l t .
% p ( pressure ) can be r e t r i e v e d as a d i a g n o s t i c tool , but only the gradient
% of pressure i s required to be updated f o r the time−stepping algorithm .

u = reshape ( r e s u l t ( 1 : end /3) ,Np,K ) ;
w = reshape ( r e s u l t ( end/3+1:2∗end /3) ,Np,K ) ;
p = reshape ( r e s u l t (2∗ end/3+1:end ) ,Np,K ) ;

% Update flow v a r i a b l e s in packed form .
Qnp1 ( : , : , 1 ) = Qnp1_estimate ( : , : , 1 ) ;
Qnp1 ( : , : , 2 ) = u ;
Qnp1 ( : , : , 3 ) = w;

Qn = Qnp1 ;
gradp_nmh = gradp_nph ;

time ( n ) = time ( n ) + dt ;
n = n + 1 ;

end % End while loop .

Listing 1. Octave code illustrating the second-order fractional-step method for solving the Incompressible Euler equations
numerically.

IV. Discussion

The issue of enforcing incompressibility for the Euler equa-
tions in density-driven flow whilst retaining numerical sta-
bility and accuracy can be a troublesome one (see [1] for a
discussion). The second-order accurate method of Bell and
Marcus [2] offers a method that works quite well for invis-
cid flow as can be seen in the work therein. Current work
by Joshi et al. [3] looks to extend these ideas into three-
dimensions by weakly enforcing C0 and C1 continuity at the
same time as enforcing the incompressibility constraint in a
weak way. The reader is encouraged to learn more through
their own explorations with their numerical code and by read-
ing the paper by Joshi et al. [3] – A pre-print is available
on http://arXiv.org.

V. References

1. T.-P. Fries, H.G. Matthies, A Review of Petrov–Galerkin Sta-
bilization Approaches and an Extension to Meshfree Methods,
Technical University Braunschweig, 2004-01 (2004).

2. J.B. Bell, D.L. Marcus, A Second–Order Projection Method
for Variable–Density Flows, Journal of Computational
Physics, 101, 334–348 (1992).

3. S.M. Joshi, P.J. Diamessis, D.T. Steinmoeller, M. Stastna,
G.N. Thomsen, A post-processing technique for stabilizing
the discontinuous pressure projection operator in marginally-
resolved incompressible inviscid flow, Submitted to Com-
puters and Fluids (2016).

3



Figure 1: Cartoon diagram comparing PNC
1 − P1 (top) and RT0 (bottom) element pairs. The velocity shape functions are shown on the left and the

elevation/pressure shape functions are shown on the right. The node associated to each of them is represented by "•". Velocity shape functions
are scalar for PNC

1 − P1 and vectorial for RT0. Image obtained from Hanert et. al. (2008) A tale of two elements: PNC
1 − P1 and RT0.

Figure 2: A piecewise linear function in two dimensions. Image obtained from https://en.wikipedia.org/wiki/Finite_element_method

4


