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I. Introduction

The linearized shallow water equations on the rotating f -
plane can be written as

∂M
∂t

+ f M⊥ = −gH∇η (1)

∂η

∂t
+∇ ·M = 0 (2)

where H(x) is allowed to vary in space in terms of the Carte-
sian position vector x = (x, y), η(x, t) is the free surface
elevation above the undisturbed state, M = Hu is the volume
transport vector, u = (u(x, t), v(x, t)) is the fluid velocity field,
and superscript ⊥ denotes rotation by 90◦ counter-clockwise,
so that M⊥ = H (−v, u). The parameters g and f represent
the acceleration due to gravity and the Coriolis parameter,
respectively. The fluid depth is non-dimensionalized via
H(x) = Hh(x), where H is the mean basin depth and h(x) is
dimensionless.

If f = 0, the equations can be combined to yield

ηtt = gH∇ · h∇η . (3)

Looking for solutions that are periodic in time, i.e.,

η = η̂eiσt , (4)

yields the familiar Laplace eigenvalue problem

∇ · h∇η̂ = λη̂ , on Ω , (5)

where λ = −σ2/gH, subject to the boundary condition

∂η̂

∂n
= 0 , on ∂Ω . (6)

On the other hand, if f 6= 0, combining the equations
results in

∇ · h∇η̂ +

(
σ2 − f 2

gH

)
η̂ +

i f
σ
∇h · ∇⊥η = 0 , on Ω , (7)

subject to the boundary condition

∂η

∂n
− i f

σ

∂η

∂s
= 0 , on ∂Ω . (8)

Upon inspecting the eigenvalue problem, we notice that
unlike the Laplace eigenvalue problem, the operator is not
self-adjoint. Further difficulty results from the fact that the no
normal flow boundary condition in terms of η contains real
and imaginary components and is coupled to the eigenvalue,
σ.

II. Methods

To circumvent the difficult nature of the eigenvalue problem
(7)–(8), we invoke the Helmholtz decomposition

M = −h∇φ +∇⊥ψ , (9)

where φ and ψ satisfy the simpler boundary conditions

∂φ

∂n
= ψ = 0 on ∂Ω . (10)

The next step is to form two sets of basis functions based

on two eigenvalue problems. We define the set {φα, λα}
Nφ

α=1
given by the eigenproblem

∇ · (h∇φα) + λαφα = 0 , on Ω , (11)

∇φα · n̂ = 0 , on ∂Ω , (12)

and the set {ψα, µα}
Nψ

α=1 given by

∇ ·
(

1
h
∇ψα

)
+ µαψα = 0 , on Ω , (13)

ψα = 0 , on ∂Ω . (14)

Here, Nφ and Nψ are taken as finite integers to truncate the
bases for computational reasons. It can be shown using di-
mensional analysis that a suitable normalization for the basis
functions is∫∫

Ω

h∇φk · ∇φldA = λl

∫∫
Ω

φkφldA = Ac2H2
δk,l , (15)

∫∫
Ω

1
h
∇⊥ψk · ∇⊥ψldA = µl

∫∫
Ω

ψkψldA = Ac2H2
δk,l . (16)

Next, φ and ψ are expanded in terms of the basis functions
via

φ = ∑
α

Pα(t)φα , (17)

ψ = ∑
α

Qα(t)ψα . (18)
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Now, since

ηt = −∇ ·M = ∇ · (h∇φ) = −∑
α

Pαλαφα , (19)

it is clear that η should be expanded in terms of the φα’s. Rao
and Schwab (1976) set

η = ∑
α

Rα(t)ηα = ∑
α

Rα(t)
λ

1
2
α

c
φα , (20)

such that the Rα’s are dimensionless, just as the Pα’s and Qα’s
are, by construction.

A system of ordinary differential equations for the expan-
sion coefficients can be found by substituting the expansions
(17)–(20) into the momentum and continuity equations, tak-
ing appropriate inner products, and exploiting orthogonality
resulting in a system of the form

d
dt

V + EV = 0 , (21)

where

V =

 P
Q
R

 , and E =

 −A −B − < ν >
−C −D 0

< ν > 0 0

 ,

(22)
and

< ν >=


ν1 0 . . . 0
0 ν2 . . . 0
...

...
. . .

...
0 0 . . . νNφ

 = diag (νi) . (23)

Here,

Aβα = − 1

Ac2H2

∫∫
Ω

f h∇φβ · ∇⊥φα dA , (24)

Bβα = − 1

Ac2H2

∫∫
Ω

f∇ψα · ∇φβ dA , (25)

νβ = cλ
1
2
β . (26)

Cβα =
1

Ac2H2

∫∫
Ω

f∇⊥φα · ∇⊥ψβ dA ,

=
1

Ac2H2

∫∫
Ω

f∇φα · ∇ψβ dA ,

= −Bαβ . (27)

and
Dβα =

1

Ac2H2

∫∫
Ω

f
1
h
∇ψα · ∇⊥ψβ . (28)

Assuming
V(t) = eiσtV̂ , (29)

we recover a matrix eigenvalue problem of the form

iEV̂ = σV̂ . (30)

Inspecting the structure of E and recalling that the matrices
A and D are symmetric, B = −CT , it follows that E is anti-
symmetric. Therefore, iE is Hermitian and the eigenvalues σ
are real. Furthermore, since iE is purely imaginary and σ is
purely real, it follows that all eigenvectors must have real and
imaginary components in order to satisfy the eigenproblem
(30). Physically, this property corresponds to the various basis
functions being out of phase with one another.

III. Benchmark Results: Kelvin waves in a

circular basin

As a means of validating our numerical method, we have
reproduced the analytical calculations performed by Csanady
(1967) for a two-layer flat-bottomed circular basin of radius
r0 = 67.5 km representing a model great lake. The accelera-
tion due to gravity and Coriolis parameter were taken to be
g = 9.81 ms−2, f = 10−4 s−1, respectively. The upper-layer
and lower-layer thicknesses were taken to be H1 = 15 m and
H2 = 60 m, and the density jump between the upper and
lower layers was taken to be ∆ρ = 1.74 kg m−3 with a refer-
ence density of ρ0 = 1000 kg m−3. The calculations follow
the normal modes decomposition in the vertical direction
Csanady (1967), so that the barotropic (surface) horizontal
free modes of oscillation are computed using the long wave
speed for surfaces wave cbt =

√
gH where H = H1 + H2 is

the total depth, and the baroclinic (internal, vertical mode
1) horizontal modes are computed using the long internal
wave speed cbc =

√
gHe where He = (∆ρ/ρ0) H1H2/H is

the equivalent depth. The importance of the density strat-
ification relative to the Earth’s rotation is captured by the
non-dimensional quantity

S =
c

f r0
. (31)

Current Method Analytical
s σ/ f σ/ f Relative Error
1 0.069514 0.069418 0.0013844
2 0.13904 0.13883 0.0015106
3 0.20853 0.20824 0.0013735
4 0.27807 0.27764 0.0015312
5 0.34752 0.34703 0.0014061
6 0.41709 0.41641 0.0016186

Table 1: Analytical and numerical values for the non-dimensionalized fre-
quencies (σ/ f ) of Kelvin modes with azimuthal mode number s
in a stratified rotating basin with Burger number S = 0.067.

Sample animations and discussion follows.
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