
An initial packet of short waves centered at the periodic boundary was released with no initial velocity. As the 
two wave-trains pass into the deep region, their phase speeds increase and their amplitudes decrease. As they exit 
the deep region and enter the shallow region, the opposite effect occurs thereby enhancing the dispersion and 
nonlinearity which reorders the wave-trains. Topographical wave refraction is another apparent feature of the 
simulation. Model resolution is 1024x1024.
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The Model Results
The wavelength constraint on the traditional Shallow Water Model (SWM) 
requires wavelengths to be much larger than the depth

In the case of a flat bottom (H=const.), FFT-based solvers provide an 
efficient means of solving the linear system described above. However, for 
non-constant depth, similar solvers do not exist, and solution by iteration is 
required. The dimension of the required linear system may be reduced by a 
factor of 2 by forming an auxiliary equation for the non-hydrostatic 
pressure variable                     [Karniadakis2005]                   

that can be derived by retaining only terms of order                        in the 
so-called Boussinesq equations [Brandt1997]. With the added dispersion 
terms, dispersive short-waves are now appropriately modelled.

This constraint may be relaxed to allow for weakly non-hydrostatic 
corrections to the hydrostatic pressure, yielding the following dispersion-
modified SWM for a single fluid layer of constant density

In this study, we use Fourier and Chebyshev pseudospectral (global, high-
order) spatial discretization methods to solve the above equations. Due to 
the presence of a time-derivative in the dispersion terms, explicit time-
stepping formulas for the velocity fail to be stable, and the time-stepping 
problem must be written in terms of a 2x2 block linear system.

Short Wave Interactions with Topography
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Navier Stokes
SWM
Dispersion Modified SWM

(H/λ) � 1 .

ut + (u ·∇)u = −g∇η + f(u× k̂) + (H2
/6)∇(∇ · ut) ,

ηt +∇ · ((H + η)u) = 0 ,

which must be solved for z at each time-level.

∇ · ((H2
/6)∇z)− z = ∇ · [(u ·∇)u+ g∇η + f(k̂× u)] ,

(z = ∇ · ut)

Dispersive Break-Down of a Nonlinear Kelvin Wave
The nonlinear Kelvin wave obtained from the traditional SWM steepens and forms a shock. Our recent 
simulations with the dispersion-modified SWM suggest that dispersion may act to redistribute the energy 
amongst a collection of high-energy solitary-like waves. Similar results were reported in [delaFuente2008]. The 
model was initialized with a large-amplitude surface perturbation against the western wall propagating southward 
with the linear long-wave speed. Relevant physical parameters:                                                              The 
distance from the western wall to the white line represents the Rossby deformation radius. The channel is 
periodic in y (Fourier basis), and a Chebyshev basis is used in x.  Model resolution is 512x1024.

In addition to giving the highest order of spatial accuracy possible, the 
numerical method employed is also very non-dissipative. The only 
dissipation takes the form of a tuneable low-pass wavenumber filter that 
removes energy from the unphysical small scales.

f = 1.5e-4 s−1
, g

� = 0.2 m s−2
, H = 20 m .
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